
来源:麦叔编程
作者:麦叔
本文帮你快速掌握数据分析师必须会用的两个工具 - ipython和jupyter notebook。
既然有了Python,为什么还要ipython?麦叔不用说话,给你一张图你就明白啦。jupyter notebook又是什么鬼?
建议把本文放到收藏夹。吃灰也好过需要的时候找不到。
iPython是Interactive Python,它是基于Python的一个包装。它其实就是一个可以通过pip安装的包。提供了普通python之外的一些功能,其中一个功能就是可以显示图片。
iPython在数据分析师,数据科学家,人工智能科学中经常使用。
(1)安装
python -m pip install ipython
(2)使用
ipython就是Python,使用方法和使用普通的交互式Python一样,代码也一样。只不过输出显示上有一定优化。
zjueman@maishu data_analysis % ipython Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019,
14:08:53) Type 'copyright', 'credits' or 'license' for more information IPython
7.21.0 -- An enhanced Interactive Python. Type '?' for help. In [1]:
2.使用ipython:为了运行一下代码,请先安装numpy:
python -m pip install numpy
In [1]: a = 5 In [2]: b = "麦叔" In [3]: import numpy as np In [4]:
data = {i:np.random.randn() for i in range(7)} In [5]: data Out[5]: {0: 0.8738401705018338,
1: 0.7173530856483666, 2: 1.269301701227684, 3: -0.6322949353286054, 4: -2.3619895093818295,
5: -0.9031446928993554, 6: -0.07942775508126601}
3.问号寻求帮助:
In [4]: name = 'maishu' In [5]: name?
Type: str
String form: maishu
Length: 6 Docstring:
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.__str__() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
4.退出
In [10]: quit() zjueman@maishu data_analysis %
5.画图 为了运行一下代码需要先安装matplotlib
python -m pip install matplotlib
In [1]: import numpy as np In [2]: %matplotlib Using matplotlib backend: MacOSX In [3]: import matplotlib.pyplot as plt In [4]: plt.plot(np.random.randn(50).cumsum()) Out[4]: [<matplotlib.lines.line2d at 0x7fa7e7f8ce20>]matplotlib.lines.line2d at 0x7fa7e7f8ce20>
数据科学家们觉得ipython还不够过瘾,又在ipython基础上开发了jupyter notebook:一个基于网页的写代码界面。
jupyter是基于ipython的,很多操作几乎都一样。但是它有很多独特优点:
(1)文件可以保存为ipynb的文件
(2)在线编写代码
(3)支持多人协作
(4)支持markdown格式的文档
1. 安装
python -m pip install jupyter
2. 启动
> jupyter notebook
这个命令会在本机的8888端口上运行一个网站,并自动打开浏览器:
http://localhost:8888/tree
3. 基本使用
(1)创建文件
(2)编写和运行代码
(3)保存和修改文件名
4. Tab补全
在notebook中打代码的过程中,按Tab键可以自动提示和补全,类似于Pycharm和VSCode等IDE的功能:
它可支持:
(1)自动补全变量名
(2)自动补全函数名
(3)自动补全文件名等
5. 集成matplotlib画图
6. 魔术命令
(1)运行脚本:%run
(2)打印命令输入历史:%hist
(3)运行效率:%timeit
(4)其他魔术命令
(1)停止执行:Ctrl+C
(2)其他ipython快捷键
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07