
来源:丁点帮你
作者:丁点helper
在前面的文章中,我们跟大家一起学习了R中的数据导入、基本的操作方法、描述性统计等内容。
这其中的很多操作都是针对格式和内容都完好的数据而言的。但在实际工作中,我们收集到的数据往往不那么完美,需要先进行一番清理。今天开始,我们来学习如何将杂乱的数据整理得井井有条。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
示例数据是某高校教师对本班学生的调查结果,为方便练习,大家可先下载:
文件名:survey.csv
链接: https://pan.baidu.com/s/1XZgdyb59wPyWy6wp_hmoQw
密码: 5lyw
survey <- read.csv("//Users//Desktop//titanic.csv", header = TRUE)
用下面的语句来了解一下这个数据:
#数据有多少行多少列dim(survey)[1] 238 17#获取数据中的变量名称 names(survey) [1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" [9] "Exercise" "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" [17] "Pulse"
可以知道,这项调查共涉及到238名同学,调查项目有17项。
数据清理第一步:有无缺失
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
今天这篇文章只介绍如何对数据的完整性进行判断。
在survey这个数据库的238条记录中,如果某条记录中的17个变量都获取到了信息,不存在漏填的情况,那么认为这条记录是完整的。
1.用complete.cases()这个函数得到数据中的每条记录是否完整,其结果是一个逻辑型变量。
如下面的结果,survey这个数据的第一条记录(第一行)是完整的,而第232条记录是不完整的。
complete.cases(survey) [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [20] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [39] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [58] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [77] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE [96] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[115] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[134] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[153] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[172] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE[191] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[210] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[229] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
2. 那么有多少条记录是完整的呢?根据下面的结果,答案是232条。
下面的语句中,which()的作用是得到逻辑型变量complete.cases(survey)中值为TRUE的顺序号。大家可以自行运行一下which(complete.cases(survey))这个语句,看看结果是什么。
所以最后用length(),可以得到共有多少条记录的完整性检验结果为TRUE。
length(which(complete.cases(survey)))[1] 232
3. 仅保留所有完整的记录,并生成一个新数据集。有两种方法:
# 仅保留complete.cases(survey) = TRUE的记录 survey_com <- survey[complete.cases(survey),] # 去掉有缺失情况的记录survey_com <- na.omit(survey)
4. 我们也可以看看有缺失的记录是哪些,来进一步考察数据的缺失规律。
survey_miss <- survey[!complete.cases(survey),] survey_miss
结果如下图:
小结
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
面对一个数据,除了了解数据的行、列、变量等,每条记录的完整性是我们首先需要关注的问题之一。因为缺失记录和未缺失记录之间的差异很可能会对数据分析结果的准确性有直接影响。
通过本文介绍的4个方面来判断数据的缺失情况、定位完整数据和缺失数据,可以对所得样本的质量进行估计,也可为数据填补做好准备。
关于缺失数据的处理方法,大家可以参考这篇文章。
如果你也有待处理的数据,那么快用今天学的方法检验一下你的数据是否完整吧。
只有从根本上了解自己的数据,把每一个缺失值处理好,才可能做出逻辑严密、有说服力的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26