京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
设想一下,你如何开发下面这个游戏:
很难想象,用简单的字符串,int, list等数据类型就能表达和开发出这么复杂的游戏(实际上是可以的,只是很麻烦)。
更好的做法是使用面向对象的技术。这个游戏无非就是一个个对象互相打打杀杀!
编程是对现实世界的模拟,我们先来看看面向对象的几个核心概念:
在早期的编程语言中,比如C语言中,是没有面向对象的概念的,所有的程序,不管多么复杂,都是用数字,字符串等来表达的。那时候我们称为面向过程编程。
面向过程编程:Procedure Oriented Programming 是一种以过程和任务为中心的编程思想。通过一系列具体的步骤操作相关的数据,实现软件功能。
面向对象编程
Object Oriented Programming 是一种以对象为基础的编程思想。把数据和操作封装到对象中,通过对象一系列的交互,实现软件功能。
下面我用一个小的例子带你理解面向对象。
假设有两条狗,他们分别有自己的名字,身高,血量和攻击力。我们要模拟一条狗攻击了另外一条狗。
#表示狗的属性 dog1_name = '大黄'
dog1_height = 0.7
dog1_blood = 1.0
dog1_power = 0.1
dog2_name = '二黑'
dog2_height = 0.7
dog2_blood = 1.0
dog2_power = 0.2 #dog1攻击dog2 print('dog1 attacking dog2')
dog2_blood = dog2_blood - dog1_power #dog2攻击dog1 print('dog2 attacking dog1')
dog1_blood = dog1_blood - dog2_power
这显然不好,如果有100条狗互相乱咬呢?
我们来看看面向对象的写法:
#类是一个模板 class Dog: #构造方法 def __init__(self, name, height, blood, power):
self.name = name
self.height = height
self.blood = blood
self.power = power
def attack(self, dog2):
dog2.blood = dog2.blood - self.power
d1 = Dog('大黄', 0.7, 10, 3) #创建第1个实例 d2 = Dog('二黑', 0.5, 10, 4) #创建第2个实例 print(f'攻击前:{d2.blood}')
d1.attack(d2)
print(f'攻击后:{d2.blood}')
这虽然看起来代码比上面还长,但是代码很自然,更容易懂,更有“人性”。
如果我们要创建100个Dog,也很容易。把这100个Dog放到一个列表中也很方便。
下面我们来庖丁解牛,从零开始学习面向对象的核心概念。
我们再回到前面的例子,从零开始,理解类的核心概念。
#最简单的类 class Dog: pass
这是一个最简单的类,它里面什么都没有,就像一个空白的信封。注意类的定义以class开头,后面是类的名字,类名一般用大写。
虽然它什么都没有,但我们仍然可以用它来创建实例。
d1 = Dog()
d2 = Dog() print(id(d1)) print(id(d2))
创建实例通过使用类名加括号,有的类需要传入参数。通过下面的打印可以看出d1和d2的内存地址不同,他们确实是不同的实例,在内存里有自己独立的房间。
Python是一个动态语言,我们可以给类动态的添加属性:
d1.name = '旺财' print(d1.name) print(d2.name) #报错,因为d2没有name属性
正常情况下类不是空的,我们要求创建实例的时候就必须填写必要的信息,这样才是一个有效的实例。
我们创建实例的过程,会调用了一个叫做__init__的方法。前面的Dog中没有init方法,它就给我们创建了一个空的对象出来。实际上Python调用了Object类的init方法,这个方法不需要传任何参数,也不做任何事情。
现在我们给Dog类加上__init__方法:
#类是一个模板 class Dog: #构造方法 def __init__(self, name, height, blood, power):
self.name = name
self.height = height
self.blood = blood
self.power = power
这时候如果再去创建Dog的实例,而不传入参数就会报错了:
d1 = Dog() #报错,必须要传入指定的参数
init函数的第一个参数永远是self,表示当前对象,表示自己。后面的参数看我们自己的需要,我们希望Dog类有name, height, blood和power等几个属性,所以我们就加了这几个参数。
现在来正常的创建两个实例:
d1 = Dog('大黄', 0.7, 10, 3) #创建第1个实例 d2 = Dog('二黑', 0.5, 10, 4) #创建第2个实例
创建实例的时候,不需要传入第一个self参数,Python会自动传入。我们只要传入self后面的几个参数就行。注意参数的顺序。
这里需要认识一下self:
并不是所有的属性都一定要在构造方法中传入,比如我们规定:blood在创建的时候默认都是10,也就是满血。
那么就没必要在init中传入这个参数了。我们可以在init函数中设置默认的值为10。
class Dog: #构造方法 def __init__(self, name, height, power):
self.name = name
self.height = height
self.blood = 10 self.power = power
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16