京公网安备 11010802034615号
经营许可证编号:京B2-20210330
公众号:数据海洋
作者:数据海洋
假设你是一个业务运营的同学,尝试问几个和数据相关的问题?
如何用一句话,让你像你的业务团队的同学描述数据的价值,你会怎么描述?
“让你服务的业务伙伴更专注,更专业,更高效。”
业务状况是否异常,需要数据分析师能定义和设计好核心的关键数据指标,从而让业务可以用数据有效、清晰、简洁反应业务状况好与坏:
1. 绝对值:例如:销售金额多少?
2. 比率值:
同比:周同比【同比上周同比】;周累计同比;月累计同比;年累计同比
环比:日环比;周环比;月环比;
平均值比:公司过去1周、2周,4周、8周平均;
目标比:周完成率;月完成率;
……
现在比较流行的是构建数据仪表盘,如果没有资源开发那么好的可视化工具。做成表格的样式也是非常好的。但比较建议报表的开发,有一定的拆分逻辑。
为什么发生业务异常?
如果业务有异常,业务想知道异常发生在哪?例如:一家线下超市,如果店长发现销售同比上周下降了。想是哪个课组下降了?再看是由哪些单品下降引起的。
有同学问,海洋老师这不可能直接定位到下降的商品吗?按下降程度由大到小排序:通过商品名称、销售金额、下降比例、下降影响占比,可以快速定位到具体单品。
其实中间增加一层的拆解,不管课组还是大类,这层往往是先要定位到人,有人负责后再去发现问题,就意味着有人后续会跟进这个行动。【任何指标的拆解第一层应该:以人负责的维度】
当看到下降最大的商品名称列表的时候,需要去判断为什么会下降?【在一个相对成熟的业务中,销售下降的原因是可以进行穷举的】一个好的数据分析师,当负责支持业务一段时间后,在理解业务的基础上。应该是有能力构建出业务关键指标的数据指标分析体系。
假设你是一家服务行业的数据分析师,销售金额是一个最重要的商业指标,当销售变化后。假设按某个【有负责人】维度进行了拆分后,你会再关联分析什么样的数据指标从而快速定位销售可能下降的原因,销售下降把原因分成几种类型:
1. 本身原因
a) 商品原因
b) 会员原因
c) 配送原因
d) …..
2. 竞争对手
通过数据分析发现,业务问题解决的方向在哪?机会点是什么?可以采取什么样的策略行动?资源的限制是什么。
经验丰富的业务同学,对出现的问题可能会有很多可能原因的假设。希望通过数据快速验证这些假设。
四、通过数据进行提前预警,对可能的问题
提前做准备
通过对业务的关键环节,关键的商业场景,设定一定的阀值。当出现设计的阀值的时候可以及时预警【数据的时效性】
没有系统自动化的预警,可能会导致异常问题发现的时间周期很大,甚至有可能被忽略而没有发现问题。【防微杜渐】
可能会出现某个问题的概率
不是等待业务实际产生问题后,再是通过历史数据积累,利用算法或者分析规则的沉淀对未来某个场景下的核心数据指标进行预测性分析,从而在事中进行预警,提前做准备。
落地:
1. 看了你的数据分析报告,在开始调整策略方案;
2. 对某个具体的行动做出针对性优化;
知识点:
任何一个数据分析师(应该是所有的同学),到达一个新公司的时候,一定是要去了解公司的部门设置,每个部门的工作内容,工作范围,工作职责,工作目标是什么。当然这个部门的设置如何能与公司的商业模式,业务流程结合起来是最好的。
数据分析目的:帮助业务决策,帮助业务解决问题。
首先一定要很清楚知道这个问题产生的背景,要解决的问题是什么类型的,解决问题的时间是什么。一般数据分析要解决的问题类型主要可以分为以下几类:
1. 解释数据变化的真正原因。
2. 针对变化,建议采取的策略是什么。
数据分析从流程来看,基本就按以下的步骤:在实际工作中,一定是把问题首先界定清楚,业务明确提出需求。业务在提数据需求的时候往往是不清晰的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26