
随着高学历普遍化,各行各业整体素质在稳步攀升,像外卖小哥的队伍就拥有7万硕士、21万本科生。
同样,保姆也不再是传统意义上普通的家政员,已出现一批素质偏高,学习能力强,具备一技之长的保姆,其学历均在本科以上,能力已接近“管家”。
图片来源:新浪微博
这不,微博爆出了一则热搜,上海某业主招聘女性生活助理,年薪给到了50W-100W之间。所谓“水涨船高”,工资上去了,硬件要求自然也高。
正如前阵子盛传的名校硕士回家后欢欢喜喜当育儿嫂,看来现今“职业无贵贱”的观念早已深入人心。
不过,无论是保姆,还是月嫂、亦或是育儿员等,都是有明确一技之长的岗位,学历、背景、能力只是围绕着这项“一技之长”锦上添花而已。
图片来源:新浪微博
然而,有网友一针见血指出,多数高端家政岗更青睐女性,男性在这个热门的领域似乎都不怎么具竞争优势,小编为此心疼男性几秒……
话说回来,当下井喷式发展的热门行业国内挺多,无论是AI,还是大数据、云计算、区块链等,性别上都没太大局限,适合逻辑、学习等能力都强的男性。
今天,我们就以数据分析为例,给大家介绍一个男女都适合的高薪行业:数据分析。
——行业前景
企业想在竞争激烈的市场中胜出,决策速度和反馈效率尤为重要。数据透过什么方法,才能快速转变成决策依据,是现代企业迫切且不可避免的问题。
数据分析在企业决策中散发出极大魅力,受到从业者的追捧。同时,巨大的人才缺口让理性数据分析,辅助实战经验的新型数据分析人才供不应求。
不仅如此,数据分析入门科学,行业适应性强,零基础也可轻松掌握,而一旦具备了过硬的业务及分析操作能力,拿高薪就并非难事。
——什么是数据分析
为提取有用信息,并形成最终结论,而对大量数据进行详细研究和概括总结的过程,我们称之为数据分析。
其实,往简单里说,就是复杂、乱、多的数据,无论是文本、音乐还是文字、数字等,通过处理和分析,将其变成知识、智慧的方法。
随着大数据时代的来临,拥有数据分析思维的人,倍受社会各界人士的青睐。同时,以这种思维为基础,逐渐形成了一个热门产业。
各大企业的数字化进程不断升华,对数据分析的需求量也越来越大,供不应求的市场导向,让其成为新风口行业,且从业者薪资偏高。
——给大家举个例子
如果你是运营良好的淘宝服装店店长,应该会及时掌握很多数据,如:一天销售了多少件商品、挣多少钱、哪个品牌销售多、哪个品牌出货少、哪个商品需要补货了、哪种款式和颜色受欢迎等,从而便于你做出策略调整,保持良性增长。
这是了解情况。
数据积累到一定程度,你会开始发现规律,如:某类人群喜欢买圆领深色服装,而另一类人喜欢宽松浅色服装,购买了A品牌的人会再买B品牌短裤,浏览C页面的顾客会对D商品产生兴趣。
这是数据挖掘。
得到信息后的你,会试着将圆领深色服装推销给某类人,将宽松浅色服装推销给另一类人,将B品牌短裤销售链接添加在A品牌商品页中,将D商品促销优惠加到C页面,从而让商品销售量大幅提升。
这是发现规律。
一段时间后,你又发现了E品牌被浏览2-3次就能售出一件,于是想方设法来提高E品牌的点击次数,通过浏览量的趋势,大致来预测未来一段时间销量变化的情况。
这是预测未来。
——数据分析要具备啥能力?
那么,聊了这么多的数据分析,对于进入数据分析行业,成为该领域的佼佼者,我们应该学习并优化自己哪些方面呢?这里小编列出几个方面,仅供大家参考!
① 基础知识
在数学知识的基础上,数据分析还引入了统计学,包含但不局限于数学、线性代数、统计学等,这些都是决定数据分析职业发展高度的基石,希望大家能好好掌握。
初级数据分析师仅需要学习描述统计相关的内容和公式,但如果想更进一步进阶,就要掌握统计算法,甚至机器学习算法等更多知识,算法相关的工作则要对高数进行深入学习。
② 分析工具
Excel是最容易入门,且运用最广的数据分析工具,所以其函数、数据透视表和公式请稳打稳扎。另外,具备SPSS等专业统计分析技能更好。
另外,只要你是和数据相处,就不得不接触数据库,所以要学SQL基本的查、改、增、删等的方法。
随着数据的增长,你可能会需要用到Python或R等技能来更高效的处理数据,有些行业还会需要SAS或其他工具,需根据实际情况来选择。
③ 业务/行业/商业知识
从各种操作中,我们可以看到脱离业务的纯数据分析不具任何意义,想成为优秀的数据分析师, 首先必须了解业务。
熟悉业务后再去获取需要的数据,对数据进行业务分析,制定出相应方案,这才是真香。
④ 跨部门沟通协调能力
公司由各个部门组成,数据分析自然就离不开和很多部门,如业务部、技术部等的沟通,要将得出的报告展示人前,并说服别人接受,数据分析师就必须具备良好的协调沟通能力。
⑤ 持续且快速的学习力
学习力是很重要的素质之一,无论数据分析还是其他岗位,都需有持续、快速学习的能力,学习各种新知识和新技能。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09