
俗话说:知己知彼,方能百战百胜!
大四的小明近来非常沮丧,因为努力考研却遭遇了滑铁卢,以失败告终,聊到为什么要考研的原因时,我缄默了……
他喜欢金融相关工作,但偏偏本科专业差个十万八千里,于是认为一定要考研读了金融学才能找到热爱的工作。
最近,临时起意,和已工作2年多的朋友小美聊了聊有关年终奖的问题,却得知她从未拿过年终奖。
原因竟然是,她从未在一个公司干满3个月……
从上述两位的回答中,可以明显感觉到,他们对自己的职业定位肯是模糊的。
为什么要有清晰的职业定位?
古有云:吾十有五而志于学,三十而立,四十而不惑,五十而知天命, 六十而耳顺,七十而从心所欲,不逾矩。
早在几千年前,大教育家孔子就告诉我们要:志于学。相信很多人都没有清晰的职业定位,因为他们可能并没有意识到这样是将自己置于危机当中。
职业定位不清有哪些危害?
1、无法可持续发展
很多人认为自己事业没起色是能力不够,但是你是否有认真思考过“我是谁?”、“我想干什么?”、“环境支持我干什么?”
或许只是你对自己的认知不够,所以像迷失了方向的羊羔,充满抱怨和无奈,却始终无法找到真正适合的工作。
2、无法积累有利资源
明确的职业定位,让你有明确的目标和方向,在奔向目标的过程中,你会有意识的积累相关领域的人脉、知脉、金脉。
职场有个“聚焦法则”,把所有资源都集中于某个点,才最容易成功,如:审计或会计会致力于考CPA、金融从业者的终极目标是考CFA,数据分析入门和进阶则会考取CDA数据分析师证书……
简而言之,当你职业定位不清晰时,就容易博而不专,失去最核心的竞争力。
3、无法抵御外界干扰
当定位不清晰时,人就没有重心,从而容易被外界的干扰,被一时的高薪、享受、虚浮所吸引,放弃了真正有发展前景的工作。
另外,如果你没有明确的目标,一旦遭遇困难,哪怕只是个小难题,便会丢盔弃甲,无法在事业上发光发热。
如何找到自己的职业定位呢?
准确地定位,可使自己集中精力用于自己擅长的领域,从而可以获得更加长足的发展。
可是,我不知道怎么定位?埋头看规划书或视频吗?好像也没学到什么!
为什么?
1、很多书籍或视频并没给出具体的自我分析和定位的方法;
2、知识面太广,而且每个人的实际情况不一样,无法生搬硬套!
这时自学则无法掌握职业目标定位和分析的精髓,为了让更多人认清自己,精准的定位职业目标,CDA特别推出了《直播课:职业目标精准定位与分析》。
为什么要推荐这堂直播课
❶ 与大咖零距离接触:直播课讲师拥有近16年职场经验,曾就职于世界500强三星电子、联想集团等,并拥有11年职业辅导和就业推荐经验;
❷ 为每个人量身定位:直播内容经过多方打磨,从理论到真实经验,学起来更简单,适合绝大多数人;
❸ 职业定位延伸知识:用整合的眼光告诉大家,在职业进阶过程中,如何将职业和相应认证证书结合进行加持才可事半功倍。
免费职业规划,
手把手教如何分析自己,
找准职业定位,
12月9日晚20:00,
机会难得,
我们不见不散!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13