
mysql性能优化就是通过合理安排资源,调整系统参数使mysql运行更快、更节省资源。mysql性能优化包括查询速度优化、数据库结构优化、mysql服务器优化等。
优化简介
优化数据库是数据库管理员和数据库开发人员的必备技能。MySQL优化,一方面是找出系统瓶颈,提高MySQL数据库整体的性能;另一方面需要合理的结构设计和参数调整,以提高用户操作响应的速度;同时还要尽可能节省系统资源,以便系统可以提供更大负荷的服务。
例如,通过优化文件系统,提高磁盘I/O的读写速度;通过优化操作系统调整策略,提高MySQL在高负荷情况下的负载能力;优化表结构、索引、查询语句等使查询响应更快。
在MySQL中可以使用SHOW STATUS语句查询一些MySQL数据库的性能参数。
语法:
show status like 'value';
其中,value是要查询的参数值,常用的性能参数如下:
示例:查询MySQL服务器的连接次数
优化查询
查询是数据库中最频繁的操作,提高查询速度可以有效地提高MySQL数据库的性能。
分析查询语句
通过对查询语句的分析,可以了解查询语句的执行情况,找出查询语句执行的瓶颈,从而优化查询。
MySQL中提供了EXPLAIN语句和DESCRIBE语句来分析查询语句。
语法:
EXPLAIN/DESCRIBE [EXTENDED] SELECT select_options
示例:
索引对查询速度的影响
MySQL中提高性能的一个有效方式就是对数据表设计合理的索引。索引提供了高效数访问数据的方法。并且可以加快查询的速度,因此,索引对查询的速度有着至关重要的影响。
索引简介
索引是对数据库表中一个或多个字段的值进行排序的一种结构,使用索引可提高数据库中特定数据的查询速度。
索引的意义
索引是一个单独的、存储在磁盘上的数据库结构,包含着对数据表里所有记录的引用指针。使用索引可以快速找出在某个或多个字段中有特定值的行。
如果不使用索引,MySQL必须从第一条记录开始检索表中的每一条记录,直到找出相关的行。那么表越大,查询数据所花费的时间就越多。
如果在表中查询的字段有索引,MySQL能够快速到达一个位置去检索数据文件,而不需要再去查看所有数据,那么将会节省很大一部分查询时间。
比如说emp表中1W个员工的记录,要查询工号为7566的员工信息select * from emp where empno=7566,如果没有索引,服务器会从表中第一条记录开始,一条条往下遍历,直到找到empno=7566的员工信息。
如果在empno这个字段上创建索引,就可以索引文件里面找empno=7566这一行的位置,而不需要再遍历1W条记录了。
索引的优缺点
所有MySQL的字段类型都可以添加索引,但是索引也不是越多越好,而是要根据业务数据合理的使用。
优点
缺点
创建索引的原则
索引设计不合理或缺少索引都会对数据库和应用程序的性能造成障碍,高效的索引对于获得良好的性能非常重要。
需要创建索引的情况
不需要创建索引的情况
索引的结构
索引是在存储引擎中实现的,使用不同的存储引擎,所支持的索引也是不同的。
在mysql中常用两种索引结构BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样。
MyISAM和InnoDB存储引擎只支持BTREE索引,MEMORY/HEAP存储引擎支持HASH和BTREE索引。
MySQL的InnoDB存储引擎是支持hash索引的,不过我们必须启用,hash索引的创建由InnoDB存储引擎自动优化创建,我们干预不了。
索引的类型
索引的类型可以分类以下几种:
索引的操作
实际上索引也是一张表,创建索引时,数据库管理系统会在本地磁盘建立索引文件,里面保存了索引字段,并指向实体表的记录。
创建索引
create index <索引名> on <表名>(<字段名>);
自动创建索引
示例:emp表中的job添加普通索引
mysql> create index job_index on emp(job);
查看索引
语法:
show index from <表名>;
示例:查看emp表中的索引
使用索引
在查询语句中使用索引会大大提升数据的检索速度。 示例:
删除索引
删除索引只是删除了表中的索引对象,表中的数据不会被删除。 语法:
drop index <索引名> on <表名>;
示例:
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22