
mysql性能优化就是通过合理安排资源,调整系统参数使mysql运行更快、更节省资源。mysql性能优化包括查询速度优化、数据库结构优化、mysql服务器优化等。
优化简介
优化数据库是数据库管理员和数据库开发人员的必备技能。MySQL优化,一方面是找出系统瓶颈,提高MySQL数据库整体的性能;另一方面需要合理的结构设计和参数调整,以提高用户操作响应的速度;同时还要尽可能节省系统资源,以便系统可以提供更大负荷的服务。
例如,通过优化文件系统,提高磁盘I/O的读写速度;通过优化操作系统调整策略,提高MySQL在高负荷情况下的负载能力;优化表结构、索引、查询语句等使查询响应更快。
在MySQL中可以使用SHOW STATUS语句查询一些MySQL数据库的性能参数。
语法:
show status like 'value';
其中,value是要查询的参数值,常用的性能参数如下:
示例:查询MySQL服务器的连接次数
优化查询
查询是数据库中最频繁的操作,提高查询速度可以有效地提高MySQL数据库的性能。
分析查询语句
通过对查询语句的分析,可以了解查询语句的执行情况,找出查询语句执行的瓶颈,从而优化查询。
MySQL中提供了EXPLAIN语句和DESCRIBE语句来分析查询语句。
语法:
EXPLAIN/DESCRIBE [EXTENDED] SELECT select_options
示例:
索引对查询速度的影响
MySQL中提高性能的一个有效方式就是对数据表设计合理的索引。索引提供了高效数访问数据的方法。并且可以加快查询的速度,因此,索引对查询的速度有着至关重要的影响。
索引简介
索引是对数据库表中一个或多个字段的值进行排序的一种结构,使用索引可提高数据库中特定数据的查询速度。
索引的意义
索引是一个单独的、存储在磁盘上的数据库结构,包含着对数据表里所有记录的引用指针。使用索引可以快速找出在某个或多个字段中有特定值的行。
如果不使用索引,MySQL必须从第一条记录开始检索表中的每一条记录,直到找出相关的行。那么表越大,查询数据所花费的时间就越多。
如果在表中查询的字段有索引,MySQL能够快速到达一个位置去检索数据文件,而不需要再去查看所有数据,那么将会节省很大一部分查询时间。
比如说emp表中1W个员工的记录,要查询工号为7566的员工信息select * from emp where empno=7566,如果没有索引,服务器会从表中第一条记录开始,一条条往下遍历,直到找到empno=7566的员工信息。
如果在empno这个字段上创建索引,就可以索引文件里面找empno=7566这一行的位置,而不需要再遍历1W条记录了。
索引的优缺点
所有MySQL的字段类型都可以添加索引,但是索引也不是越多越好,而是要根据业务数据合理的使用。
优点
缺点
创建索引的原则
索引设计不合理或缺少索引都会对数据库和应用程序的性能造成障碍,高效的索引对于获得良好的性能非常重要。
需要创建索引的情况
不需要创建索引的情况
索引的结构
索引是在存储引擎中实现的,使用不同的存储引擎,所支持的索引也是不同的。
在mysql中常用两种索引结构BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样。
MyISAM和InnoDB存储引擎只支持BTREE索引,MEMORY/HEAP存储引擎支持HASH和BTREE索引。
MySQL的InnoDB存储引擎是支持hash索引的,不过我们必须启用,hash索引的创建由InnoDB存储引擎自动优化创建,我们干预不了。
索引的类型
索引的类型可以分类以下几种:
索引的操作
实际上索引也是一张表,创建索引时,数据库管理系统会在本地磁盘建立索引文件,里面保存了索引字段,并指向实体表的记录。
创建索引
create index <索引名> on <表名>(<字段名>);
自动创建索引
示例:emp表中的job添加普通索引
mysql> create index job_index on emp(job);
查看索引
语法:
show index from <表名>;
示例:查看emp表中的索引
使用索引
在查询语句中使用索引会大大提升数据的检索速度。 示例:
删除索引
删除索引只是删除了表中的索引对象,表中的数据不会被删除。 语法:
drop index <索引名> on <表名>;
示例:
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09