京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近日,全国抗击新冠肺炎疫情先进事迹报告会在广东举行,钟南山院士参会并发言,他表示九个月抗疫洗礼,各种“逆行者”深入人心,那些热衷追星、渴望“钱多事少离家近”的年轻人,开始思索处世之道,懂得了报效祖国的意义。
确实,疫情让年轻人感受到了医生的价值,促使今年高考后,广东省报考医学学生比例大幅度增加,环比之前增加了3700多人。
钟南山还提出了值得深思的灵魂拷问:学医的能赚很多钱吗?随后,他给出了答案:不能,但年轻人如此的表现,体现了做人应有的态度。
突如其来的疫情改变了很多人的生活,刷新了很多人的观念,越来越多年轻人选择大学专业时,不再以挣钱为首,而是以祖国需要、大众需求为先!
这种大环境下,像医学专业一样因疫情而走红的高考报考专业,还有大数据相关专业。
无论是6月北京突发的疫情,还是9月底青岛突发的疫情,相关部门都是利用大数据技术精准锁定疫情源头,并迅速找出接触人员进行核酸检测,阻断了疫情蔓延的步伐。
化身为稳控全局的利器,大数据收获了年轻人的青睐。不过,部分家长或老师对大数据存在误解,认为报考该专业需极佳电脑基础,其实不然。
大数据分析是研究大量且多样化数据,从中找隐藏规律并进行决策和预测的过程。早期多用于内部,特别是收集、组织和分析大量数据的机构。
如今,大数据分析工具越来越多,在各行各业逐渐普遍化,许多企业通过大数据分析,总能快人一步做出更明智的商业决策。
同时,2020高校应届生专业就业竞争力30强排行榜中数据科学与大数据技术首次入围,以就业竞争力指数190.4的成绩位列第三。
可见,未来其大数据相关专业的就业竞争力十分强大,是高考生值得选择的专业之一。然而,大数据分析并非编程,对计算机要求没那么高,小编列举些大数据分析需具备的知识和能力,仅供大家参考!
基础知识
大数据分析是在数学知识的基石上,引入了统计学,基础知识包含数学、线性代数等,这些是决定数据分析职业发展的高度。
初级数据分析学描述统计相关内容和公式即可,但要更进一步就需掌握统计算法,甚至机器学习等更多知识,算法相关的工作则要对高数进行深入学习。
分析工具
最容易入门的数据分析工具是Excel,所以其函数、数据透视表和公式须熟练。另外,会一个专业统计分析技能更好,SPSS作为入门是极好滴。和数据打交道必然会接触数据库,所以SQL基本的增、删、改、查等技能要掌握。
最后,可学些主流工具,如Python或R语言,有些行业会用到SAS或其他工具,可依据行业选择。
业务知识
脱离业务的纯数据分析没任何意义,优秀的大数据分析师往往对业务了如指掌。熟悉业务后再去获取数据,对数据进行分析才更得心应手。
沟通交流
数据分析会涉及很多与业务、技术部门的沟通,做报告后也需进行展示,并说服别人接受自己的结果。因此,协调沟通能力亦是非常重要的素质之一。
学习能力
无论是数据分析,还是其他岗位,都需拥有持续、快速学习的能力,学业务逻辑、行业知识、技术工具、分析框架……
——小编结语
随着科技日新月异,大数据技术必将更成熟,给人类带来了更多便利。从大数据分析所需具备的能力和基础来看,无论你是学生,还是职场人士,都能通过学习和实践,掌握大数据工具来进行分析,学以致用。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17