很多人到中年才发现,自己的职业生涯越来越局限,对于为什么会成这样,却理不出头绪来。
其实,这里可套用一个适用于多领域的原则,即:正确的努力会让路越走越宽,而一旦方向错误,往往会让自己陷入死胡同。
今天,我们就来探讨下,哪些思维方式容易让你未来的职场之路“无路可走”。
处处给自己设限
这种思维不易察觉,谁不想在事业上一展抱负,怎么可能给自己设限?所以,要先学会正确的自我省察。
▷ 你是否已经习惯了安逸?
▷ 对改变是否非常排斥?
▷ 是不是无法静下心来学习新知识和新技能?
▷ 面对挑战,总觉得自己不行?
在职场上,一定要多向上看、向外看,多接触新东西,多学习新技能,多和人打交道……
舒适区滞留太久会让人产生错误的自我认知,建议职场人可根据专业背景,去匹配其他岗位、公司,甚至行业,实现横向扩展。
比如:你是“码农”,但表达和讲解力较强,就别局限在程序员上,完全可向该技术领域的培训专家或咨询顾问发展,甚至以技术入股跻身技术合伙人行列。
人无远虑必有近忧
人往往会随大流,盲目跟风,随意选择。有个经典面试问题:为什么会选择我们公司?
有说朋友推荐、有说看到招聘就来了、有说薪资高、有说环境或福利好等,看到的往往是短期利益,如此易遭遇“人无远虑必有近忧”的困境。
俗话说,机会总是留给有准备的人,给自己制定长期职业规划,一步一个脚印,从而避开中年职业危机。
无法持之以恒
现今社会流行“快文化”,让我们变得浮躁,无论从事什么都比较缺乏耐心,无法持之以恒。
所以出现了频繁跳槽,却越跳越糟,让很多职场人错失了学习知识、掌握技能的最佳时机,以致人到中年却一事无成。
无论哪个行业,唯有持之以恒,在原有优势基础上进行转型和提升,成为自己所在领域的专家,才能将职业路线不断拓宽。
当然,除了警惕让你越走越窄的思维外,还要选择好前景行业,让自己能搭乘上数字化时代的“和谐号”,成“越老越值钱”的人。
世界经济论坛发布的《2018就业前景报告》指出,2020年全球将有7500万工作岗位被人工智能替代。同时,亦会衍生出1.33亿个新的就业岗位。
调查显示,人工智能将迅速取代会计、客户管理、初级技术工人、邮政快递、秘书、司机等行业的劳动者,使大量具有可编码、可重复性的职业快速贬值。
不过,内外科医生、数据分析师、制造业一线主管、律师、软件应用开发工程师等职业,却有越来越广阔的职业发展空间。
拿极受追捧的数据分析师来说,2020年中国大数据行业人才需求规模预计将达210万,未来5年仍将保持30%-40%的增速,需求总量在2000万人左右。
近几年高校纷纷新增大数据相关专业,但输出量远远无法填补目前市场的巨大缺口,导致数据分析岗位高薪却供不应求。
资料来源 / ITPUB博客
迫切的市场需求让数据分析岗呈现多元化面貌,主体可划分为纯数据岗和数据赋能岗。从下图中,可以看出数据分析岗的分工细、路子广,选择多……
只要你持之以恒成为其中某一技术线的专家,就能实现“越来越值钱”的职业目标。接下来,再给大家具体推荐些数据分析行业越老越值钱的工作。
数据分析岗中越老越值钱的岗位
Python数据分析师
企业想在竞争激烈的市场中胜出,决策速度和反馈效率尤为重要。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,这是现代企业最迫切且不可避免的问题。Python数据分析在企业决策中散发出了极大的魅力,受到从业者的追捧。
业务数据分析师
理性数据分析辅助实战经验,成为主流决策方式,企业急需业务数据分析过硬的人才。
人工智能工程师
当下,人工智能不断渗透各行各业,众多岗位已经被其取代。与其等待着被失业,不如主动出击,成为AI领域的一员,做人工智能的“爸爸”。
不过,由于人工智能的概念宽泛,涉及到算法、识别、语言处理等技术,所以被社会大众一致公认为高不可攀的高科技,导致很多人不敢轻易涉足。
如果你也是这样想,就太可惜了,因为你可能会由于一些认知上的偏见,错过了这个未来最具发展潜力的行业,它其实并没有我们想象中的那么遥不可及,而且也是越老越值钱的岗位之一。
结束语:“越老越值钱”的职业不但有,且会越来越多,就看你能否把握住这些绝佳机会。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28