
很多人到中年才发现,自己的职业生涯越来越局限,对于为什么会成这样,却理不出头绪来。
其实,这里可套用一个适用于多领域的原则,即:正确的努力会让路越走越宽,而一旦方向错误,往往会让自己陷入死胡同。
今天,我们就来探讨下,哪些思维方式容易让你未来的职场之路“无路可走”。
处处给自己设限
这种思维不易察觉,谁不想在事业上一展抱负,怎么可能给自己设限?所以,要先学会正确的自我省察。
▷ 你是否已经习惯了安逸?
▷ 对改变是否非常排斥?
▷ 是不是无法静下心来学习新知识和新技能?
▷ 面对挑战,总觉得自己不行?
在职场上,一定要多向上看、向外看,多接触新东西,多学习新技能,多和人打交道……
舒适区滞留太久会让人产生错误的自我认知,建议职场人可根据专业背景,去匹配其他岗位、公司,甚至行业,实现横向扩展。
比如:你是“码农”,但表达和讲解力较强,就别局限在程序员上,完全可向该技术领域的培训专家或咨询顾问发展,甚至以技术入股跻身技术合伙人行列。
人无远虑必有近忧
人往往会随大流,盲目跟风,随意选择。有个经典面试问题:为什么会选择我们公司?
有说朋友推荐、有说看到招聘就来了、有说薪资高、有说环境或福利好等,看到的往往是短期利益,如此易遭遇“人无远虑必有近忧”的困境。
俗话说,机会总是留给有准备的人,给自己制定长期职业规划,一步一个脚印,从而避开中年职业危机。
无法持之以恒
现今社会流行“快文化”,让我们变得浮躁,无论从事什么都比较缺乏耐心,无法持之以恒。
所以出现了频繁跳槽,却越跳越糟,让很多职场人错失了学习知识、掌握技能的最佳时机,以致人到中年却一事无成。
无论哪个行业,唯有持之以恒,在原有优势基础上进行转型和提升,成为自己所在领域的专家,才能将职业路线不断拓宽。
当然,除了警惕让你越走越窄的思维外,还要选择好前景行业,让自己能搭乘上数字化时代的“和谐号”,成“越老越值钱”的人。
世界经济论坛发布的《2018就业前景报告》指出,2020年全球将有7500万工作岗位被人工智能替代。同时,亦会衍生出1.33亿个新的就业岗位。
调查显示,人工智能将迅速取代会计、客户管理、初级技术工人、邮政快递、秘书、司机等行业的劳动者,使大量具有可编码、可重复性的职业快速贬值。
不过,内外科医生、数据分析师、制造业一线主管、律师、软件应用开发工程师等职业,却有越来越广阔的职业发展空间。
拿极受追捧的数据分析师来说,2020年中国大数据行业人才需求规模预计将达210万,未来5年仍将保持30%-40%的增速,需求总量在2000万人左右。
近几年高校纷纷新增大数据相关专业,但输出量远远无法填补目前市场的巨大缺口,导致数据分析岗位高薪却供不应求。
资料来源 / ITPUB博客
迫切的市场需求让数据分析岗呈现多元化面貌,主体可划分为纯数据岗和数据赋能岗。从下图中,可以看出数据分析岗的分工细、路子广,选择多……
只要你持之以恒成为其中某一技术线的专家,就能实现“越来越值钱”的职业目标。接下来,再给大家具体推荐些数据分析行业越老越值钱的工作。
数据分析岗中越老越值钱的岗位
Python数据分析师
企业想在竞争激烈的市场中胜出,决策速度和反馈效率尤为重要。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,这是现代企业最迫切且不可避免的问题。Python数据分析在企业决策中散发出了极大的魅力,受到从业者的追捧。
业务数据分析师
理性数据分析辅助实战经验,成为主流决策方式,企业急需业务数据分析过硬的人才。
人工智能工程师
当下,人工智能不断渗透各行各业,众多岗位已经被其取代。与其等待着被失业,不如主动出击,成为AI领域的一员,做人工智能的“爸爸”。
不过,由于人工智能的概念宽泛,涉及到算法、识别、语言处理等技术,所以被社会大众一致公认为高不可攀的高科技,导致很多人不敢轻易涉足。
如果你也是这样想,就太可惜了,因为你可能会由于一些认知上的偏见,错过了这个未来最具发展潜力的行业,它其实并没有我们想象中的那么遥不可及,而且也是越老越值钱的岗位之一。
结束语:“越老越值钱”的职业不但有,且会越来越多,就看你能否把握住这些绝佳机会。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08