
作者:丁点helper
来源:丁点帮你
前文我们详解过线性回归,也初步介绍了生存分析所涉及的生存数据,明白了:做生存分析最特殊的一点是分析时要纳入研究对象的“生存时间”,更一般的是指:出现某种特定结局的时间。今天的文章,我们更进一步地来学习如何看懂生存函数和生存曲线。
生存概率和死亡概率
在进入正题之前,我们需要首先明确两个概念:生存概率与死亡概率。
1. 生存概率(survival probability),用p表示,是指某时段开始时存活的个体,到该时段结束时仍存活的可能性。
说起来好像有点儿吓人,但是计算起来很简单:
2. 死亡概率(probability of death),与生存概率相对, 用 q 表示,指某时段开始时存活的个体,在该时段内死亡的可能性。如年死亡概率表示年初尚存人口在今后1年内死亡的可能性。
p + q = 1。
介绍完这两个基础概念后,我们来看看什么叫生存函数(survival function)。
生存率
教科书的定义是:生存函数表示观察对象的生存时间T大于某个时间的概率,常用 S(t)表示。
生存函数又称为累积生存率,简称生存率(survival rate)。例如,前文谈到的肺癌患者,其生存函数可以写作:
代表患者治疗后存活时间大于18个月的概率,该值越大表明治疗的疗效越好。这里有一个点很容易混淆,S(t)表示生存率,而前面我们用p代表的是生存概率。一个是生存率,另一个是生存概率,难道不是一回事儿吗?
还真不是!生存率与生存概率虽然一字之差但定义却不大相同(当然两者也存在联系)。
还是上面的T=18的例子,对于生存率和生存概率,我们可以分别这样来写:
生存率:S(t=18)=P(T>18)
生存概率: P(t=18)=P(T=18)
看上面的式子,生存率的计算是用“>”,而生存概率的计算是“=”。由此,生存概率是指单位时间上生存的可能性,生存率是某个时间段(由一个或多个单位时间组成的时间段)生存的可能性,是多个单位时间生存概率的累计结果。
比如评价肺癌治疗后3年的生存率,是指第一年存活,第二年存活,直至第三年仍然存活的累积概率,而这3年间每一年都会有不同的生存概率,两者之间的关系如下图:
数学上,生存率和生存概率也有如下的计算关系:
生存曲线
除了计算某个时刻(从开始到该时刻的整个时间段)的生存率之外,我们还可以利用图示法更加直观地描述生存率随生存时间的变化而变化。
下图即为根据某项研究制定的生存曲线:横轴是生存时间,纵轴是生存率。
如上图,我们可以发现,当T=11.124时,对应的生存率是0.5。
随着时间的延长,部分患者死亡,从而导致生存函数的值会逐渐降低。从图形上看,当时间趋于无穷大时,生存函数的值趋于0,意味着,长远来看,每位患者的生存时间都是有限的,不可能无限活下去。
在实际应用中如何来估算生存率呢?也很简单,若数据中无删失值(不懂什么是删失,戳此阅读),某时刻的生存率可用下式估计(有删失的情况要更复杂一些):
一般而言,生存分析的主要应用如下:
1.描述生存时间的分布特点。通过生存时间和生存结局的数据估计平均存活时间及生存率,绘制生存曲线,根据生存曲线分析其生存特点等。
2.比较生存曲线。通过相应的假设检验方法对不同样本的生存曲线进行比较,以推断各总体的生存状况是否存在差别,比较不同治疗方法预后效果的差异。
3.分析影响生存状况的因素。通过生存分析模型来探讨影响生存状况的因素,通常以生存时间和结局作为因变量,而将可能的影响因素作为自变量,通过拟合生存分析模型,筛选具有统计学意义的生存状况的影响因素。
具体在实际应用中如何进行生存函数的估计而实现上述应用,这就是我们下篇文章将要给大家带来的内容了。
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14