
作者:豌豆花下猫
来源:Python猫
python 支持 lambda 匿名函数,其扩展的 BNF 表示法是lambda_expr ::= "lambda" [parameter_list] ":" expression,也就是lambda 参数序列:表达式。
这是一种便捷的函数定义方式,若翻译成我们熟知的函数形式,会是这个样子:
def (parameter_list): return expression
也就是说,python 中的 lambda 函数是一种可接收多个参数的函数,返回值是一个表达式。
它最大的好处是单行简洁,不需要函数命名与换行缩进。
不得不说,匿名函数有时候是挺好用的,比如下文会介绍到的一些常见用法,它因此受到了不少人的推崇。
但是,匿名函数通常也会造成代码难以阅读,容易被人滥用,再加上 Python 只提供了对它的“残疾的”支持,所以又有一些观点不建议使用匿名函数。
事实上,Python 之父 Guido van Rossum 就属于“不推荐使用派”,他甚至曾经(2005年)想要移除 lambda,只不过最后妥协了。
lambda 这一个由其他开发者贡献进来的特性(借鉴自 lisp 语言),存在了十多年,但是却被这门语言的创造者(兼首席设计师)所嫌弃,最后竟然还奇迹般地幸存了下来,对于这个故事,大家是否觉得挺有戏剧性的?
接下来,本文就仔细聊一聊这个处境尴尬却生命力顽强的 lambda 匿名函数吧!
1、lambda 怎么使用?
lambda 函数通常的用法是结合 map()、reduce()、filter()、sorted() 等函数一起使用,这些函数的共性是:都可以接收其它函数作为参数。
例如下面的几个例子:
my_list = [3, 1, 5, 4, 10] # 元素全加1,结果:[4, 2, 6, 5, 11] list(map(lambda i:i+1, my_list)) # 过滤小于10的元素,结果:[3, 1, 5, 4] list(filter(lambda i:i<10, my_list)) # 元素累加,结果:33 from functools import reduce reduce(lambda i,j:i+j, my_list, 10) # 字典按值排序,结果:[('b', 1), ('a', 3), ('d', 4), ('c', 5)] my_dict = {'a':3, 'b':1, 'c':5, 'd':4} sorted(my_dict.items(), key=lambda item:item[1])
初学者也许会觉得代码读不懂,但是只要记住“Python中的函数是一等公民”,知道一个函数可以被作为另一个函数的参数或者返回值,就容易理解了。
比如对于 map() 函数的例子,你可以理解成这个形式:
my_func = lambda i:i+1 list(map(my_func, my_list))
甚至可以还原成普通的函数:
def add_one(i): return i+1 list(map(add_one, my_list))
map() 函数的第一个参数是一个函数,第二个参数是一个可迭代对象。这第一个参数会迭代地调用第二个参数中的元素,调用的结果以迭代器的形式返回。
这个例子使用了 list(),是为了方便一次性取出迭代器中的元素,直观地展示出来,在实际使用中,很可能会是基于迭代器的形式。
由这几种用法,我们可以总结出 lambda 函数的使用规律:
2、lambda 有什么问题?
由上面的用法可以看出,使用 lambda 函数的代码比较紧凑简洁,所以有人称它体现了“Pythonic”的优雅思想。
但是,lambda 函数有没有什么缺陷呢?
有!当前的 lambda 函数有一个最大的问题,即只支持单行表达式,无法实现丰富的功能,例如无法在函数创建时使用语句(statement),无法使用 if-else 的判断条件,也无法使用 try-except 的异常捕获机制,等等。
这极大地限制了它的能力,导致了它被人诟病为“残疾的”。
从技术实现的角度上看, 这个问题可以通过语法层面的设计来解决。
在当年的邮件组讨论中,有人提出过一些解决思路,比如这封邮件:
出处:https://mail.python.org/pipermail/python-dev/2006-February/060654.html
它提出了一个lambda args::suite 的想法,支持写成这样的形式:
ss = sorted(seq, key=(lambda x:: try: return abs(x) except TypeError: return 0))
但是,Guido 很快就否决了这个思路。
他写了一篇文章《Language Design Is Not Just Solving Puzzles》来回应:
出处:https://www.artima.com/weblogs/viewpost.jsp?thread=147358
其基本观点是:不能光顾着解决一个问题/实现某种功能,就引入缺乏“Pythonicity”的语言设计。
那么,为什么 Guido 会认为这是一种不好的设计呢?
我试着概括一下,理由是:
简而言之,他认为简洁友好的用户体验更为重要,如果简洁的语法无法满足需求,就应该写成具名函数的形式,而非设计出复杂的匿名函数。
3、为什么 Guido 想移除 lambda?
上文提到的多行 lambda 语句(multi-statement lambda)事件发生在 2006 年,我们看到了 Guido 不想给 lambda 引入复杂设计的原因。
但是,早在 2005 年,Guido 就曾经想要从 Python 移除 lambda,他对它的“嫌弃”是一个“历史悠久”的传统……
在《The fate of reduce() in Python 3000》这篇短文中,Guido 提出要一次性移除 reduce()、map()、filter() 以及 lambda。
移除 lambda 的理由如下:
回顾一下我们在前文中总结出的 lambda 的 4 条使用规律,可以发现它跟几个高阶函数(可以接收其它函数作为参数的函数)有较强的“寄生关系”,如果它们能移除了的话,lambda 确实就没有什么独立存留的意义了。
那么,为什么 Guido 觉得应该移除那几个高阶函数呢?
主要的理由有:
总体而言,Guido 的想法暗合了《The Zen of Python》中的这一条:There should be one-- and preferably only one --obvious way to do it。
但是回到现实,为了照顾某些人的习惯,以及对兼容性的考虑,Guido 最后保守地放弃了“清理异端”的计划。
因此,lambda 得以从 Python 最高独裁者的手上死里逃生。直到一年后,它试图兴风作浪(多行表达式),却惨遭镇压。
我仿佛听到了 Guido 的内心 OS:当初我想删除东西的时候,你们百般阻挠,现在你们想添加东西,哼,没门!……
哈哈,开了个玩笑。
Guido 的所有决定都体现了他的 Pythonic 设计美学、自恰的逻辑一致性以及对社区声音的权衡。
对于 lambda,我认可他的观点,而通过回溯语法发展的历史,我觉得自己对于 Python 的理解变得更为丰富了。不知道你可有同感?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23