京公网安备 11010802034615号
经营许可证编号:京B2-20210330
北京市人力资源和社会保障局发布《关于将北京地区2020年专业技术人员职业资格考试并入下一年度开展的通知》,一级建造师、一二级建筑师、一级注册消防工程师等考试项目并入2021年度统一组织。
这几天,又听到北京17.1万CPA考生声泪俱下,想尽办法恳求注协不要取消2020年北京考场的考试,真可谓一波未平一波又起……
看来2020年对很多考证大户来说是清闲的一年,那些“飘香”的证书基本都并入2021年了。网友们纷纷表示,按照今年这种形式,北京地区的考证大军们,2020年不得不歇一歇了!
虽全球很多考试无法如期进行,但主办方们积极响应,如:CFA、CPA、雅思、托福、CDA等,都在以最快的速度来恢复考试正常的秩序。
为不打乱考生的规划,将疫情影响降到最低,并助力更多普通人成就数据梦,CDA数据分析师认证考试也启动了应对方案,尽全力确保了12届CDA数据分析认证考试于7月25-26日,在全国23座城市如期进行。
同时,CDA数据分析师与全球计算机化考试服务商Pearson VUE达成深度合作,未来Pearson VUE将向社会大众提供灵活且全球专业水准的CDA数据分析师考试服务。
这次合作不仅提升了CDA数据分析师认证的影响力,还将原定1年2次(6月与12月)的考试进行了跨越式升级,实现了CDA LEVEL I 随考随报。
近几年,国内各行各业,如互联网、金融、咨询、电信、零售、医疗、旅游等,对专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才需求越来越大。
未来5年,中国大数据行业人才需求将达到2000万人。类似CFA、PMP、ACCA快速崛起并成为行业内普遍认可的证书一样,数据分析行业蓬勃发展催生出CDA数据分析师认证,并逐渐发展成长期而稳定的行业人才标准。
2020年CDA认证考试全新升级,旨在为大数据和人工智能时代提供全社会普遍认可的数据分析专业人才标准,推进数据科学人才专业考核!
——5大“CDA数据分析师证书”优势
1、行业认可高
CDA数据分析师认证是一套专业化、科学化、国际化、系统化的人才考核标准,分3个级别,证书涵盖各行大数据及数据分析从业者所需具备的技能,符合全球大数据及数据分析技术潮流。
CDA数据分析师认证得到了教育部直属中国成人教育协会及大数据专业委员会的认可,考试通过者可获CDA数据分析师中英文双证书。
CDA证书3大特性
* 由国际范围内数据科学领域行业专家、学者及知名企业共同制定,并每年修订更新;
* 根据数据科学专业岗设立的人才考核标准,与全球知名考试服务机构Pearson VUE合作,专家命题、评分公平、流程严格(专业性);
* 持证人享有CDA会员系列特殊权益,证书具备唯一性与防伪性,持证人可获电子徽章,加入Linkedin个人档案。证书3年1审,确保持证人实力与权益(权益性)。
由于政府、企业和从业者对CDA证书的认可度稳步提升,越来越多企业引进CDA证书作内部数据分析人才评定标准,CDA企业会员亦大幅增加,涵盖了中国银行、IBM大数据大学,中国电信,国家电网,德勤,CDMS、Oracle、德国云网、Meritdata、Big Data University等。
2、认证标准
CDA数据分析师认证考试由为IBM、华为等提供认证服务的全球测评行业杰出计算机化考试服务公司Pearson VUE代理,考生不仅考试更便捷,还将受益于Pearson VUE在全球的影响力。
通过CDA认证,来自各个领域的数据处理和分析人才得以证明其技能。Pearson VUE将采用随报随考技术为CDA考生提供服务,让考生能够随时就近预约考试。
升级后的CDA数据分析师认证考试的模式,实现了频次更高、考点更广,大幅提升了CDA数据分析师认证考试的专业度、共识性与含金量,促进其全球化普及。
——报名时间
——考试地点
3、持证薪资高
据相关数据统计,CDA考生已不再集中于一线城市,二三四线城市均有分布。结合市场薪资分布情况可见,非一线城市消费低薪资高,约一半CDA考生来自非一线城市。
往届考生TOP20城市分布
对比求职市场数据分析职位,CDA持证人与非持证人的月薪,发现系统学习并获等级认证者月薪均高于未考证人群,且不局限于一线城市。
LEVEL I持证人群和非持证人月薪TOP10城
CDA Level I等级证书主要面向业务数据分析,属数据分析领域初级岗位,与之匹配为数据维护岗、数据分析师、数据赋能岗、BI工程师、数据开发岗。
LEVEL II持证人群和非持证人群月薪TOP1
CDA Level II等级证书分为数据挖掘和大数据方向,为数据分析领域的中级岗位,与之匹配为数据挖掘工程师、大数据分析师。
LEVEL III持证人群和非持证人群平均月
CDA Level III等级证书为数据科学,属于数据分析领域的高级岗位,一般为上市、国企等大型企业招聘岗,主要在北上广深一线城市。
4、岗位多元化
领英2020年发布的新兴职业报告2显示,数据分析师正以超20%的年增长率高速增长。迫切的市场需求让数据分析岗呈现多元化面貌,主体可划分为纯数据岗和数据赋能岗。
纯数据岗,孵化出数据工程师、数据科学家和人工智能专家等,职责主要集中在数据处理、业务建模、数据可视化、数据平台搭建,就职数据部门。
另外,企业数字化转型中,不同行业、不同岗位都对数据分析技能提出了要求,使得数据赋能岗位多样化,渗透各行业。
CDA持证人就职公司
数据分析岗分工细、选择多等特性,也推动着CDA认证证书考生逐年攀升,近2届的增长率达40%。
CDA历届考生增长率
截止2020年,CDA数据分析师持证者已遍布500强企业、科技独角兽、大型金融机构、国有企业、机关事业单位等。
在大环境及宏观政策的影响下,预计会有更多数据相关的从业者和求职者考取CDA证书。
5、入行门槛低
数据分析行业在国内虽是朝阳产业,但国内高校人才输出无法满足市场需求,促使企业往往更注重数据分析岗从业者的实操能力而非学历,故而这个行业整体的门槛相对较低。
拿数据分析就业市场上两类主要的分类来说,纯数据岗学历涵盖从高职到博士,另一类数据赋能岗门槛包容性比纯数据岗更大。
往届持证人学历分布
不过,正因为缺少学历门槛的约束,企业想找到合适的对口数据分析人才,就不得不依靠行业内长期稳定形成的高含金量证书。
所以,会有更多的考证大军,为了更好的未来,需要拿下这块敲门砖,来认证自身的数据分析能力。
2020年全新升级的CDA数据分析师认证考试,从含金量、实力值等各方面来看,都是考证大军们非常好的选择之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16