京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
前面的文章主要介绍了回归的一些关键词,比如回归系数、样本和总体回归方程、预测值和残差等,今天我们结合一个案例来看看如何做完整的回归分析,准确而言,是多重线性回归(Multiple Linear Regreesion)。
回顾:多重线性回归
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
在实际应用中,我们当然很少只纳入一个自变量。多重线性回归一般也叫“多元线性回归”,我更支持“多重”的叫法,因为“多元”一般也指“因变量Y”有多个。
通过前面的文章,我们知道做线性回归就是要构建Y与X的线性关系,主要目的有两个,一是确定X对Y的影响程度(即回归系数的计算);二是通过X来预测Y。
这里最重要的一条准则是:Y需要是定量变量,就是类似于“收入”、“得分”等。而对X没有这样的要求,可以是定量的,如“教育年限”、“年龄”等;也可以是“性别”、“民族”等分类变量。
案例 从某高校三年级女生体检的数据中,随机抽取20名作为样本,数据包括体重(kg)、胸围(cm)、肩宽(cm)及肺活量(L),分析女大学生肺活量的影响因素,数据见下表:
首先简单看看上表的数据,我们想要研究女生肺活量的影响因素,所以回归的因变量为“肺活量(Y)”,根据常识和数据,这里的Y是定量变量。
搜集的其他数据作为潜在的影响因素(X)纳入回归方程,分别是:体重、胸围、肩宽。我们也能简单就能判断这三个自变量都是定量变量。
(对于变量类型如何判断还不太了解的同学,戳此回顾)
这里进行回归分析,一是判断这些X是否都会影响Y(总体回归系数是否不为0);二是通过构造的回归方程,未来根据X的值计算Y的预测值。
多重线性回归的SPSS操作
回归分析用SPSS操作的步骤如下:
SPSS数据录入格式
回归操作窗口,Dependent为因变量,Independent为自变量,分别移入
上图中的“Method”称作“自变量筛选”方法,我们做线性回归分析很重要的一点是找Y的影响因素,这里的“找”就意味着“筛选”。
比如本案例我们纳入了三个自变量,通过回归分析,就是要找到那些真正对Y产生影响的变量。最终的结果有可能三个X都有影响,则最终的回归方程会有三个X,也有可能一个X都没有。
我们看到Method的下拉菜单有不同的选项:
Enter:将自变量强行全部纳入回归方程,不排除回归系数P值大于0.05的情况;
Stepwise、Remove、Backward、Forward,这些都是软件筛选自变量的方法,虽然名称不一,但思想相近,主要就是根据回归系数检验的P值是否小于0.05(有的是0.1)判断回归方程中应不应该有这个变量。
一般来讲,没有哪个筛选方法最优,但实际应用中常见的是Stepwise和Backward,建议大家自己进行回归分析时可以更换不同的方法尝试,选择自己认为合适的方法。
本案例使用Stepwise法,中文称为“逐步法”或“步进法”。
多重线性回归的结果分析
以下为SPSS分析结果展示:
表1:回归方程的拟合程度
上表最左侧一列为“Model”,表示的是SPSS筛选变量的过程,因为我们选择的是stepwise,所以每进行一步,即每筛选一个变量,就称为一个Model,比如Model"1"表示只纳入1个自变量,Model“2”表示纳入2个,“3”表示纳入3个,”4“表示最终模型剔除了一个自变量,仅纳入2个自变量。
表格第2-4列分别为”R、R Square、Adjusted R Square“,一般的教科书讲的很多,表示的是回归方程对因变量的解释程度,数值越大,解释度越高。但它又是一个比较尴尬的数,实际应用简单参考即可。
表2:回归方程的整体检验
这里的Model和上表1中表示的是同一个意思,代表了包括不同自变量的回归方程。对于回归方程的检验,一般来讲,都是有统计学意义的,看最后一列(Sig.),即P值均小于0.05。
表3:回归系数结果
表3中的Model详细展示了变量的筛选过程,比如在Model 3中,回归方程将三个自变量”肩宽、体重、胸围“全部纳入,但是发现,”肩宽“这个变量的Sig.(P值)大于0.1了,于是就将它剔除出去,从而得到模型4——只纳入”体重和胸围“两个自变量,对照后面的P值结果,均小于0.05。
以上只是一种筛选变量的一种方法(Stepwise),通过统计软件P值自动进行,这并不意味,所有的线性回归分析均只能通过这种方法筛选,我们常说需要结合专业知识判断,在做回归分析时也不例外。
如果回归分析的结果与专业知识相悖,比如根据专业知识有影响的变量却被软件剔除,那我们首先得慎重思考回归的结果是否可信,比如是否满足前文提及的LINE条件,是否出现了多重共线性问题等等;如果经过诊断分析发现这些问题都不存在,在研究报告或论文中,仍可以如实地报告结果,为后面的研究提供参考。
本案例,我们还是依照统计软件的结果筛选变量,得到的最终回归方程为:
根据上表,我们写出本研究的回归方程:
上述结果表示,可以认为体重和胸围是影响该校一年级女大学生肺活量的主要因素,保持胸围不变,体重增加1kg,估计肺活量平均增加0.081L(回归系数”0.081“的含义,在多重线性回归分析中也可称作”偏回归系数“);保持体重不变,胸围增大1cm,估计肺活量平均增加0.046L(回归系数”0.046“的含义)。
另外,上表最后一列提供了一个”标准化偏回归系数“,这是将XY分别标准化之后再进行回归分析,如下:
”标准化偏回归系数“可以用来比较不同的自变量X对Y的影响程度。本例中,体重和胸围的标准化偏回归系数分别为0.644和0.436,意味着体重对肺活量的影响大于胸围对肺活量的影响。
以上即为回归分析的全过程,最后留给大家一个思考题,这里进行的分析,表示的是X和Y的相关关系,还是因果关系?欢迎在评论区留言讨论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11