
作者:丁点helper
来源:丁点帮你
前面的文章主要介绍了回归的一些关键词,比如回归系数、样本和总体回归方程、预测值和残差等,今天我们结合一个案例来看看如何做完整的回归分析,准确而言,是多重线性回归(Multiple Linear Regreesion)。
回顾:多重线性回归
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
在实际应用中,我们当然很少只纳入一个自变量。多重线性回归一般也叫“多元线性回归”,我更支持“多重”的叫法,因为“多元”一般也指“因变量Y”有多个。
通过前面的文章,我们知道做线性回归就是要构建Y与X的线性关系,主要目的有两个,一是确定X对Y的影响程度(即回归系数的计算);二是通过X来预测Y。
这里最重要的一条准则是:Y需要是定量变量,就是类似于“收入”、“得分”等。而对X没有这样的要求,可以是定量的,如“教育年限”、“年龄”等;也可以是“性别”、“民族”等分类变量。
案例 从某高校三年级女生体检的数据中,随机抽取20名作为样本,数据包括体重(kg)、胸围(cm)、肩宽(cm)及肺活量(L),分析女大学生肺活量的影响因素,数据见下表:
首先简单看看上表的数据,我们想要研究女生肺活量的影响因素,所以回归的因变量为“肺活量(Y)”,根据常识和数据,这里的Y是定量变量。
搜集的其他数据作为潜在的影响因素(X)纳入回归方程,分别是:体重、胸围、肩宽。我们也能简单就能判断这三个自变量都是定量变量。
(对于变量类型如何判断还不太了解的同学,戳此回顾)
这里进行回归分析,一是判断这些X是否都会影响Y(总体回归系数是否不为0);二是通过构造的回归方程,未来根据X的值计算Y的预测值。
多重线性回归的SPSS操作
回归分析用SPSS操作的步骤如下:
SPSS数据录入格式
回归操作窗口,Dependent为因变量,Independent为自变量,分别移入
上图中的“Method”称作“自变量筛选”方法,我们做线性回归分析很重要的一点是找Y的影响因素,这里的“找”就意味着“筛选”。
比如本案例我们纳入了三个自变量,通过回归分析,就是要找到那些真正对Y产生影响的变量。最终的结果有可能三个X都有影响,则最终的回归方程会有三个X,也有可能一个X都没有。
我们看到Method的下拉菜单有不同的选项:
Enter:将自变量强行全部纳入回归方程,不排除回归系数P值大于0.05的情况;
Stepwise、Remove、Backward、Forward,这些都是软件筛选自变量的方法,虽然名称不一,但思想相近,主要就是根据回归系数检验的P值是否小于0.05(有的是0.1)判断回归方程中应不应该有这个变量。
一般来讲,没有哪个筛选方法最优,但实际应用中常见的是Stepwise和Backward,建议大家自己进行回归分析时可以更换不同的方法尝试,选择自己认为合适的方法。
本案例使用Stepwise法,中文称为“逐步法”或“步进法”。
多重线性回归的结果分析
以下为SPSS分析结果展示:
表1:回归方程的拟合程度
上表最左侧一列为“Model”,表示的是SPSS筛选变量的过程,因为我们选择的是stepwise,所以每进行一步,即每筛选一个变量,就称为一个Model,比如Model"1"表示只纳入1个自变量,Model“2”表示纳入2个,“3”表示纳入3个,”4“表示最终模型剔除了一个自变量,仅纳入2个自变量。
表格第2-4列分别为”R、R Square、Adjusted R Square“,一般的教科书讲的很多,表示的是回归方程对因变量的解释程度,数值越大,解释度越高。但它又是一个比较尴尬的数,实际应用简单参考即可。
表2:回归方程的整体检验
这里的Model和上表1中表示的是同一个意思,代表了包括不同自变量的回归方程。对于回归方程的检验,一般来讲,都是有统计学意义的,看最后一列(Sig.),即P值均小于0.05。
表3:回归系数结果
表3中的Model详细展示了变量的筛选过程,比如在Model 3中,回归方程将三个自变量”肩宽、体重、胸围“全部纳入,但是发现,”肩宽“这个变量的Sig.(P值)大于0.1了,于是就将它剔除出去,从而得到模型4——只纳入”体重和胸围“两个自变量,对照后面的P值结果,均小于0.05。
以上只是一种筛选变量的一种方法(Stepwise),通过统计软件P值自动进行,这并不意味,所有的线性回归分析均只能通过这种方法筛选,我们常说需要结合专业知识判断,在做回归分析时也不例外。
如果回归分析的结果与专业知识相悖,比如根据专业知识有影响的变量却被软件剔除,那我们首先得慎重思考回归的结果是否可信,比如是否满足前文提及的LINE条件,是否出现了多重共线性问题等等;如果经过诊断分析发现这些问题都不存在,在研究报告或论文中,仍可以如实地报告结果,为后面的研究提供参考。
本案例,我们还是依照统计软件的结果筛选变量,得到的最终回归方程为:
根据上表,我们写出本研究的回归方程:
上述结果表示,可以认为体重和胸围是影响该校一年级女大学生肺活量的主要因素,保持胸围不变,体重增加1kg,估计肺活量平均增加0.081L(回归系数”0.081“的含义,在多重线性回归分析中也可称作”偏回归系数“);保持体重不变,胸围增大1cm,估计肺活量平均增加0.046L(回归系数”0.046“的含义)。
另外,上表最后一列提供了一个”标准化偏回归系数“,这是将XY分别标准化之后再进行回归分析,如下:
”标准化偏回归系数“可以用来比较不同的自变量X对Y的影响程度。本例中,体重和胸围的标准化偏回归系数分别为0.644和0.436,意味着体重对肺活量的影响大于胸围对肺活量的影响。
以上即为回归分析的全过程,最后留给大家一个思考题,这里进行的分析,表示的是X和Y的相关关系,还是因果关系?欢迎在评论区留言讨论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25