
SPSS均值检验(Compare Means)平均数比较
Means过程用于统计分组变量的的基本统计量。这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。Means过程还可以列出方差表和线性检验结果。
[例子]
调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:
暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120
暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112
该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-2所示。或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口
2)启动分析过程
在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。出现对话框如图4-3。
图4-3 Means设置窗口
3)设置分析变量
从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“Independent List”框里,用户可以从左边变量列表里选择一个或多个分组变量。
多个分组变量既可放在一层,又可放在不同层。利用图中的“Previous”和“Next”按钮可以在不同层之间切换。
4)选择输出统计量
单击“Options”按钮,将打开如下图所示的对话框。在“Options”对话框中,“Statistics”框中列出了SPSS可求的统计量。其中各项的意义分别为:
Mean 均值。 Number of Cases 观测量数目 Standard Deviation 标准差 Median 中位数。 Grouped Median 分组的中位数 Std. Error of Mean 均值的标准误 Sum 观测值之和 Minimum 最小值 Maximum 最大值 |
Range 极差 First 第一个观测值 Last 最后一个观测值 Variance 方差 Kurtosis 峰度 Std. Error of Kurtosis 峰度的标准误 Skewness 偏度 Std. Error of Skewness 偏度的标准误 |
其中,“Mean”、“Number of Cases”和“Standard Deviation”项为系统的默认选项。
在“Cell”框中列出了已选中的统计量。从“Statistics”框中选择要生成的统计量。
“Statistics for First Layer”框中列出了第一层分组的另外两个统计量。
“Anova table and eta”选中将给出方差分析表和eta统计量。方差分析表的前提条件是按照分组变量分组后各组
的均值都相等。eta统计量为分组变量与生成统计量的变量关系紧密程度的度量。
“Test for Iinearity”选中给出分析变量和分组变量的线性关系参数,其前提条件为:分组变量和分析变量线性相关。
本例子选定统计量为“Mean”、“Number of Cases”、“Standard Deviation”3个统计变量。选中复选项“Anova table and eta”。
5)提交执行
提交各选项,在本例中我们不做其他选择,保持缺省值。在图4-3中点击“OK”按钮,SPSS输出结果将显示在输出浏览器中。
6) 结果与分析
表4-1 结果报告(Report)
表4-2 方差分析表 ANOVA Table
结果分析:
表4-1结果报告,分别给出暴雨前和暴雨后卵量的统计量:暴雨前有13个样本,平均数122.38,标准差15.95,方差254.42; 暴雨后有13个样本,平均数104.46,标准差15.11,方差228.269;总体26个样本,平均数113.42,标准差17.75,方差315.214。
表4-2方差分析表,共有六列,第一列说明方差的来源,Between Groups是组间的,Within Groups 组内的,Total 总的。第二列为平方和,其大小说明了各方差来源作用的大小。第三列为自由度。第四列为均方,即平方和除以自由度。第五列F值是F统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性。第六列是F统计量的显著值,由于这里的显著值0.007小于0.05,所以模型是显著的,降雨对卵量有显著影响。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30