京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用因子分析结果进行聚类分析
得到因子得分并不是最终的结果,降维是为了使我们的思路更加集中,但降维结束后得到的却未必是我们所期望的。为了更好的加以分析,我们可以在降维因子分析的基础上对得到的潜在因子进行聚类或者计算出综合因子得分进行排序。综合因子得分的计算前面我已经讨论过了,卢老师的书里介绍了因子分析之后进行聚类分析,放在这里学习学习。
【案例】:美国洛杉矶12个地区的调查数据(人口、校龄、总雇员、房价、服务),该数据可到经管之家论坛spss版块下载。
【案例说明】:12个地区的5个调查指标数据经过因子分析处理后,找到两个潜在的因子:人口因子和福利因子。并且spss自动保存了12个地区的因子得分。这个案例的目的在于评价12个地区经济情况。我们现在走一条曲线救国的思路:利用人口因子和福利因子两个变量进行聚类,看看这12个地区有哪些是相似的(同一类),这些相似的地区有哪些特征,从而集中评价属于同一类的某几个或一个地区。
一、操作:
(1)因子1,因子2为参与聚类的变量,地区编号为标示。
(2)盲聚类,先给定范围2-4类,然后对2、3、4进行比较,最终确定聚为几类。
(3)个人较喜欢输出树状图,讨厌冰柱图。要求输出聚类的树状图。采用欧氏距离平方聚类。
(4)不需要进行标准化处理,因为两个因子本身就是无量纲变量。
二、重要结果(对比):
(1)从聚类分析输出结果很难看出各地区在经济特性方面的区别。
(2)亮点:因子得分-类别散点图,可视化的效果。
上图显示,2、3、7为第二类,处在人口因子和福利因子都较低的左角,可以认为从5个经济指标来看均较差的地区;1、4、5为第一类,人口因子(人口数和就业人数)得分较低,福利因子较高,即人口和就业者较少,但福利条件去很不错的地区群(这可是梦寐以求的好地方啊!);6、8、9、11、12为第三类人口因子较高,福利因子较低,人口多,就业者多,比如hn,人口第一大省,但整体经济实力较东部地区差,福利跟不上。
做法:因子得分2为纵轴、因子得分1为横轴(谁横谁纵没有定论),用地区编号标识地区,用聚类得到的各地区类别号分组。(依次做分为2类的、3类的、4类的散点图进行比较)。
三、讨论:
就此案例而言,最终聚为几类合适?我个人的思路:从上面的散点图可以看出,编号为10的这个地区,偏离1、5、4地区较远,聚类过程显示这四个地区为同一类。鉴于1、5、4更集中,10地区较远,用异常值的思想来讲,10地区为异常值,单独放一边讨论,视为特例对待。其他11个地区分为3类。即最终聚为4类(或3类+1特例)。
从这个案例可以看出,我们很有必要在spss既得结果中提取其他可视化图形,比如上面这个因子得分散点图,使分析效果更加显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04