
“每天一个数据分析师”第16期内容奉上,请享用
原创内容 转载请注明来源
人物档案
王润烨,学统计出身,大学期间接触到数据分析,并参与实施了一些项目,结识了许多从事数据分析和挖掘的朋友。环境使然,他自己也成了数据分析师,目前就职于杭州追灿数据。
DA:请您介绍一下自己的工作经历,目前的工作职责,工作中曾做过的数据分析实例,以及您的职业规划?
王润烨:追灿的团队专注于通过大数据挖掘创造价值,积累了多年的数据分析与数据挖掘经验,团队的积累给了我一剂强力助推剂,让我快速的成长。刚开始我专注做电商的精准营销、关联销售、客户价值等业务方面的数据支持,冲在业务一线让我学会如何将业务需求与专业技能结合。
现在,我主要从事具体业务需求的数据建模工作。目前,追灿数据应用领域从电商拓展到智慧城市、智慧农业、智慧工业等,我希望自己能深入进行这些领域的数据工作,让数据应用最终惠及每个人的生活。
DA:能否给我们讲讲您在工作中遇到的印象深刻的困难及其背景成因?
王润烨:我们团队在为某传统蜂蜜品牌做电商分销渠道分析时发现,电商平台上蜂蜜产品非常多,低端市场难以快速打开局面,高端市场又被进口品牌抢占,可以说电商蜂蜜市场竞争十分激烈。如果以直接销售的形式进入市场难以达到理想目标。
DA:如何解决这个问题呢?能否请您向广大同行分享下思路?
王润烨:我们转变了思路,转而去做相关行业的分析挖掘,大家都知道啤酒尿布案例吧,我们也是这么干的,使用了FP-growth算法来进行关联分析。
我们获取了淘宝全网数据,找出了客户同时购买蜂蜜和其他产品的交易数据,并依此建立了事务数据库。依据设定的最小支持度阈值,我们根据以下思路进行分析。
1.频繁项集产生:其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
2.规则的产生:其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则。
具体步骤为可分为:
a.扫描一遍数据库,获取所有频繁项,删除频率小于最小支持度的项。在此操作的过程中,还可以得到每个项的出现频率,供后续步骤使用。
b.第二次扫描数据库,在第一次处理完成的结果基础上,构建 FP-Tree。
c.得到了 FP-Tree 树之后,再遍历整棵树获取满足一定置信度的关联规则。
经过分析发现购买蜂蜜的客户同时购买滋补营养品、美容护肤、零食、保健品、个人护理等高达 70 多个类目的产品。也就是说, 这 70 多个类目的客户都是蜂蜜产品的潜在消费者。
其中茶饮类目关联最强,而在茶饮类目中,花茶在功效上与蜂蜜最搭。找到花茶类目之后,我们再分析了一下客群的消费习惯,大概都是消费能力和消费观念都很前的年轻人。有了这些数据支撑,我们再对产品进行价格和包装定位,卖花草茶的分销商在一个月销量就排在蜂蜜销售页面前列了,这也大大带动了旗舰店的流量提升。
DA:您可否推荐一些平时充电学习专业知识的平台或途径?
王润烨:经管之家,我也经常会进去逛,里面有许多很专业的人,而且里面的人都很活跃,大家也非常热心,有许多分享和心得。如果你想充电,这是个不二选择。
https://www.coursera.org/,免费的公开在线课程项目,与全世界最顶尖的大学和机构合作,提供任何人可学习的课程。如果你的英文还不错,可以进去瞧瞧。
其实国内也有一些不错的公开课,比如网易公开课和腾讯课堂。
DA:您对希望从事数据分析行业的人有哪些建议?
王润烨:一个数据分析师,最重要的不是他的技术,而是他的思考方式。
数据分析师相对数据,其实统计知识的要求没有很高,在数据分析层面上,大多只是做一些描述性的分析,也许会用到一些统计模型,但也只要求知道一些基本的概率论与数理统计方面的知识。数据分析师在做数据分析时,最重要的还是具有业务上的眼光。当然,除了商业嗅觉之外,你也要有优秀的学习能力。现在是大数据的时代,大数据人才的要求可是非常严格的,不仅需要有深厚的统计知识,还需要强大的技术能力,你要能玩转主流的大数据分析工具。你以为这样就足够了,你还必须要有良好的沟通合作能力,一个人的能力毕竟有限,团队的力量远远比个人强得多。因此,对于一个从事数据分析行业的人来说
1.不要脱离业务实际,架空的分析是没有用的
2.整理好数据非常重要,好的数据只用简单的算法也能得到很好的效果
3.思维一定要清晰,最好做个流程图
4.选择算法时要比较,不要有先入为主的概念
5.要多和共事的同事交流,能学到不少东西
6.多学习掌握一些数据分析的工具
7.活到老,学到老,技术发展的太快,不要盲目自信
DA:您如何看待数据分析师行业的就业前景及未来发展?
王润烨:很庆幸,大数据正迎来黄金时代。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。目前随着各行各业的不断发展,数据分析行业涉及的领域正由最初的投融资项目分析转向为企业经营、电商产业、游戏等服务。照此发展,相信不远的将来,中国的数据分析行业一定也会发展到行业精细化的程度。数据分析师或将成为职场新宠。
王润烨留下了自己的邮箱:wangrunye@e-corp.cn,您可以与他沟通,或者在微信直接提问。
想要接受访问的小伙伴可以发送邮件至songpeiyang@cda.cn,“姓名+单位+职务”,或者微信添加CDA为好友(ID:joinlearn),拉你如500人数据分析师交流群,期待你来~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10