京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“每天一个数据分析师”第16期内容奉上,请享用
原创内容 转载请注明来源
人物档案
王润烨,学统计出身,大学期间接触到数据分析,并参与实施了一些项目,结识了许多从事数据分析和挖掘的朋友。环境使然,他自己也成了数据分析师,目前就职于杭州追灿数据。
DA:请您介绍一下自己的工作经历,目前的工作职责,工作中曾做过的数据分析实例,以及您的职业规划?
王润烨:追灿的团队专注于通过大数据挖掘创造价值,积累了多年的数据分析与数据挖掘经验,团队的积累给了我一剂强力助推剂,让我快速的成长。刚开始我专注做电商的精准营销、关联销售、客户价值等业务方面的数据支持,冲在业务一线让我学会如何将业务需求与专业技能结合。
现在,我主要从事具体业务需求的数据建模工作。目前,追灿数据应用领域从电商拓展到智慧城市、智慧农业、智慧工业等,我希望自己能深入进行这些领域的数据工作,让数据应用最终惠及每个人的生活。
DA:能否给我们讲讲您在工作中遇到的印象深刻的困难及其背景成因?
王润烨:我们团队在为某传统蜂蜜品牌做电商分销渠道分析时发现,电商平台上蜂蜜产品非常多,低端市场难以快速打开局面,高端市场又被进口品牌抢占,可以说电商蜂蜜市场竞争十分激烈。如果以直接销售的形式进入市场难以达到理想目标。
DA:如何解决这个问题呢?能否请您向广大同行分享下思路?
王润烨:我们转变了思路,转而去做相关行业的分析挖掘,大家都知道啤酒尿布案例吧,我们也是这么干的,使用了FP-growth算法来进行关联分析。
我们获取了淘宝全网数据,找出了客户同时购买蜂蜜和其他产品的交易数据,并依此建立了事务数据库。依据设定的最小支持度阈值,我们根据以下思路进行分析。
1.频繁项集产生:其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
2.规则的产生:其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则。
具体步骤为可分为:
a.扫描一遍数据库,获取所有频繁项,删除频率小于最小支持度的项。在此操作的过程中,还可以得到每个项的出现频率,供后续步骤使用。
b.第二次扫描数据库,在第一次处理完成的结果基础上,构建 FP-Tree。
c.得到了 FP-Tree 树之后,再遍历整棵树获取满足一定置信度的关联规则。
经过分析发现购买蜂蜜的客户同时购买滋补营养品、美容护肤、零食、保健品、个人护理等高达 70 多个类目的产品。也就是说, 这 70 多个类目的客户都是蜂蜜产品的潜在消费者。
其中茶饮类目关联最强,而在茶饮类目中,花茶在功效上与蜂蜜最搭。找到花茶类目之后,我们再分析了一下客群的消费习惯,大概都是消费能力和消费观念都很前的年轻人。有了这些数据支撑,我们再对产品进行价格和包装定位,卖花草茶的分销商在一个月销量就排在蜂蜜销售页面前列了,这也大大带动了旗舰店的流量提升。
DA:您可否推荐一些平时充电学习专业知识的平台或途径?
王润烨:经管之家,我也经常会进去逛,里面有许多很专业的人,而且里面的人都很活跃,大家也非常热心,有许多分享和心得。如果你想充电,这是个不二选择。
https://www.coursera.org/,免费的公开在线课程项目,与全世界最顶尖的大学和机构合作,提供任何人可学习的课程。如果你的英文还不错,可以进去瞧瞧。
其实国内也有一些不错的公开课,比如网易公开课和腾讯课堂。
DA:您对希望从事数据分析行业的人有哪些建议?
王润烨:一个数据分析师,最重要的不是他的技术,而是他的思考方式。
数据分析师相对数据,其实统计知识的要求没有很高,在数据分析层面上,大多只是做一些描述性的分析,也许会用到一些统计模型,但也只要求知道一些基本的概率论与数理统计方面的知识。数据分析师在做数据分析时,最重要的还是具有业务上的眼光。当然,除了商业嗅觉之外,你也要有优秀的学习能力。现在是大数据的时代,大数据人才的要求可是非常严格的,不仅需要有深厚的统计知识,还需要强大的技术能力,你要能玩转主流的大数据分析工具。你以为这样就足够了,你还必须要有良好的沟通合作能力,一个人的能力毕竟有限,团队的力量远远比个人强得多。因此,对于一个从事数据分析行业的人来说
1.不要脱离业务实际,架空的分析是没有用的
2.整理好数据非常重要,好的数据只用简单的算法也能得到很好的效果
3.思维一定要清晰,最好做个流程图
4.选择算法时要比较,不要有先入为主的概念
5.要多和共事的同事交流,能学到不少东西
6.多学习掌握一些数据分析的工具
7.活到老,学到老,技术发展的太快,不要盲目自信
DA:您如何看待数据分析师行业的就业前景及未来发展?
王润烨:很庆幸,大数据正迎来黄金时代。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。目前随着各行各业的不断发展,数据分析行业涉及的领域正由最初的投融资项目分析转向为企业经营、电商产业、游戏等服务。照此发展,相信不远的将来,中国的数据分析行业一定也会发展到行业精细化的程度。数据分析师或将成为职场新宠。
王润烨留下了自己的邮箱:wangrunye@e-corp.cn,您可以与他沟通,或者在微信直接提问。
想要接受访问的小伙伴可以发送邮件至songpeiyang@cda.cn,“姓名+单位+职务”,或者微信添加CDA为好友(ID:joinlearn),拉你如500人数据分析师交流群,期待你来~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22