
为了找出color、rarity、flower number、type of species对price的影响,由此,price为因变量,color、rarity、flower number、type 为自变量。
研究自变量对因变量的影响,可以选用的方法有两种,一种是传统的线性回归模型OLS,另一种是广义线性模型GLM(Generalized Linear Model)。传统模型(OLS)要求因变量服从正态分布,广义线性模型(GLM)则适用的范围更广,不要求因变量一定服从正态分布,并且方差也可以不稳定。
第一步:考察因变量price的分布类型。
基于以上的分析,为了判断应该适用OLS还是使用GLM。需要先对因变量price的分布状况进行分析。首先,检验因变量price是否服从正态分布,检验的结果如下:
Table 1 Tests of Normality
|
Kolmogorov-Smirnova |
Shapiro-Wilk |
||||
|
Statistic |
df |
Sig. |
Statistic |
df |
Sig. |
Price |
.149 |
156 |
.000 |
.818 |
156 |
.000 |
a. Lilliefors Significance Correction |
上表是正态性检验的结果,K-S检验和S-W检验的SIG.全部小于0.05.由此可以知道,因变量price不服从正态分布。因此,研究color、rarity、flower number、type of species对price的影响不能选用传统线性模型(OLS)分析,必须选用GLM模型。
通过price不服从正态分布这一结论,得出必须选用GLM模型之后,还需要进一步找出因变量price到底服从哪种分布。经过尝试,得出因变量price服从Gamma分布。
第二步:GLM分析
确定选用GLM模型和因变量price是服从Gamma分布的,进行GLM分析,结果如下:
Table 2
Case Processing Summary |
||
|
N |
Percent |
Included |
156 |
100.0% |
Excluded |
0 |
0.0% |
Total |
156 |
100.0% |
上表的结果陈述了,参与分析的案例个数为156。
Table 3
Categorical Variable Information |
||||
|
N |
Percent |
||
Factor |
Color |
Green |
30 |
19.2% |
Red |
30 |
19.2% |
||
White |
29 |
18.6% |
||
Black |
30 |
19.2% |
||
Yellow |
22 |
14.1% |
||
Blue |
15 |
9.6% |
||
Total |
156 |
100.0% |
||
Rarity |
Rare |
83 |
53.2% |
|
Commom |
73 |
46.8% |
||
Total |
156 |
100.0% |
||
FlowerNumber |
Single flower |
72 |
46.2% |
|
Multiple flowers |
84 |
53.8% |
||
Total |
156 |
100.0% |
||
TypeofSpecies |
Native species |
61 |
39.1% |
|
First generation hybrids |
42 |
26.9% |
||
Complex hybrids |
53 |
34.0% |
||
Total |
156 |
100.0% |
上表的结果展现了4个自变量中每个类别的选择的人数及其占比。
Table 4
Goodness of Fita |
|||
|
Value |
df |
Value/df |
Deviance |
68.838 |
146 |
.471 |
Scaled Deviance |
166.574 |
146 |
|
Pearson Chi-Square |
68.353 |
146 |
.468 |
Scaled Pearson Chi-Square |
165.400 |
146 |
|
Log Likelihoodb |
-767.832 |
|
|
Akaike's Information Criterion (AIC) |
1557.665 |
|
|
Finite Sample Corrected AIC (AICC) |
1559.498 |
|
|
Bayesian Information Criterion (BIC) |
1591.213 |
|
|
Consistent AIC (CAIC) |
1602.213 |
|
|
Dependent Variable: Price Model: (Intercept), Color, Rarity, FlowerNumber, TypeofSpecies |
|||
a. Information criteria are in small-is-better form. |
|||
b. The full log likelihood function is displayed and used in computing information criteria. |
上表是GLM模型的拟合优度分析结果,拟合优度分析是用于反映模型总体上对数据信息的表达是否充分。Deviance拟合优度检验法和Pearson Chi-Square拟合优度检验法计算出的显著性水平分别为0.471和0.468,均大于0.05,由此可以知道,模型的拟合情况良好,即模型能够比较真实可靠地反映出数据。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10