为了找出color、rarity、flower number、type of species对price的影响,由此,price为因变量,color、rarity、flower number、type 为自变量。
研究自变量对因变量的影响,可以选用的方法有两种,一种是传统的线性回归模型OLS,另一种是广义线性模型GLM(Generalized Linear Model)。传统模型(OLS)要求因变量服从正态分布,广义线性模型(GLM)则适用的范围更广,不要求因变量一定服从正态分布,并且方差也可以不稳定。
第一步:考察因变量price的分布类型。
基于以上的分析,为了判断应该适用OLS还是使用GLM。需要先对因变量price的分布状况进行分析。首先,检验因变量price是否服从正态分布,检验的结果如下:
Table 1 Tests of Normality
|
Kolmogorov-Smirnova |
Shapiro-Wilk |
||||
|
Statistic |
df |
Sig. |
Statistic |
df |
Sig. |
Price |
.149 |
156 |
.000 |
.818 |
156 |
.000 |
a. Lilliefors Significance Correction |
上表是正态性检验的结果,K-S检验和S-W检验的SIG.全部小于0.05.由此可以知道,因变量price不服从正态分布。因此,研究color、rarity、flower number、type of species对price的影响不能选用传统线性模型(OLS)分析,必须选用GLM模型。
通过price不服从正态分布这一结论,得出必须选用GLM模型之后,还需要进一步找出因变量price到底服从哪种分布。经过尝试,得出因变量price服从Gamma分布。
第二步:GLM分析
确定选用GLM模型和因变量price是服从Gamma分布的,进行GLM分析,结果如下:
Table 2
Case Processing Summary |
||
|
N |
Percent |
Included |
156 |
100.0% |
Excluded |
0 |
0.0% |
Total |
156 |
100.0% |
上表的结果陈述了,参与分析的案例个数为156。
Table 3
Categorical Variable Information |
||||
|
N |
Percent |
||
Factor |
Color |
Green |
30 |
19.2% |
Red |
30 |
19.2% |
||
White |
29 |
18.6% |
||
Black |
30 |
19.2% |
||
Yellow |
22 |
14.1% |
||
Blue |
15 |
9.6% |
||
Total |
156 |
100.0% |
||
Rarity |
Rare |
83 |
53.2% |
|
Commom |
73 |
46.8% |
||
Total |
156 |
100.0% |
||
FlowerNumber |
Single flower |
72 |
46.2% |
|
Multiple flowers |
84 |
53.8% |
||
Total |
156 |
100.0% |
||
TypeofSpecies |
Native species |
61 |
39.1% |
|
First generation hybrids |
42 |
26.9% |
||
Complex hybrids |
53 |
34.0% |
||
Total |
156 |
100.0% |
上表的结果展现了4个自变量中每个类别的选择的人数及其占比。
Table 4
Goodness of Fita |
|||
|
Value |
df |
Value/df |
Deviance |
68.838 |
146 |
.471 |
Scaled Deviance |
166.574 |
146 |
|
Pearson Chi-Square |
68.353 |
146 |
.468 |
Scaled Pearson Chi-Square |
165.400 |
146 |
|
Log Likelihoodb |
-767.832 |
|
|
Akaike's Information Criterion (AIC) |
1557.665 |
|
|
Finite Sample Corrected AIC (AICC) |
1559.498 |
|
|
Bayesian Information Criterion (BIC) |
1591.213 |
|
|
Consistent AIC (CAIC) |
1602.213 |
|
|
Dependent Variable: Price Model: (Intercept), Color, Rarity, FlowerNumber, TypeofSpecies |
|||
a. Information criteria are in small-is-better form. |
|||
b. The full log likelihood function is displayed and used in computing information criteria. |
上表是GLM模型的拟合优度分析结果,拟合优度分析是用于反映模型总体上对数据信息的表达是否充分。Deviance拟合优度检验法和Pearson Chi-Square拟合优度检验法计算出的显著性水平分别为0.471和0.468,均大于0.05,由此可以知道,模型的拟合情况良好,即模型能够比较真实可靠地反映出数据。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析咨询请扫描二维码
在当今数据驱动的时代,数据分析师的实习机会异常丰富且竞争激烈。本文将深入探讨数据分析师实习机会及建议,揭示行业内的关键信 ...
2024-12-02基础知识 统计学: 掌握数据分析的关键是理解统计学基本概念,如平均值、中位数和回归分析。这些概念为分析数据提供了重要框架 ...
2024-12-02基础知识 数据分析领域的入门之路并不是一帆风顺,就像搭建高楼大厦一样,需要坚实的基础。首先,我们来探讨几个关键的基础知识 ...
2024-12-02在当今信息爆炸的时代,数据成为企业决策的关键驱动力。成为一名优秀的数据分析师,并非仅仅掌握数据的本质,更需要具备多方面的 ...
2024-12-02数据收集与整理 数据分析师需要从多个来源收集数据,包括内部数据库、外部市场数据和社交媒体。 清洗和整理数据以确保准确性和 ...
2024-12-02在当今信息爆炸的时代,数据分析扮演着愈发关键的角色。从数据的收集、清洗、分析到最终的报告撰写,数据分析涵盖了广泛而深入的 ...
2024-12-02揭秘数据分析求职之路 在当今竞争激烈的就业市场中,数据分析专业的就业形势备受关注。究竟数据分析领域的求职难度如何?让我们 ...
2024-12-02数据分析就业挑战与应对策略 在当今社会,数据分析专业的就业并非一帆风顺。竞争激烈,技能要求高,许多人发现找工作并不容易。 ...
2024-12-02在追求成为一名出色的数据分析师的道路上,技术和软技能同样重要。技术技能涵盖了诸多方面,其中包括: 统计学知识 探索庞大数据 ...
2024-12-02从技术到软技能:数据分析的全貌 学习数据分析是一项综合性任务,涉及多方面技能。这些技能主要可以划分为技术技能和软技能两大 ...
2024-12-02作为初学者踏入数据分析领域,掌握一系列关键能力至关重要。这些技能不仅涵盖基础工具的使用,还包括深入的分析方法、对业务的理 ...
2024-12-02欢迎探寻数据分析的奇妙世界!对于初学者而言,融会贯通数据领域的复杂性可能有些令人望而却步。然而,不必惊慌,因为我们将一起 ...
2024-12-02欢迎踏上学习数据分析的旅程!数据已经渗透到我们生活的方方面面,成为决策和创新的关键。无论是提升工作效率、探索数据领域还是 ...
2024-12-02欢迎踏上数据分析的学习之旅!无论是为了提升工作效率,转行成为数据分析师,还是满足对数据分析的好奇心,掌握数据分析技能都将 ...
2024-12-02在当今数据驱动的世界中,选择合适的数据分析工具至关重要。不同工具在功能和应用场景上存在显著差异,影响着数据处理和分析的效 ...
2024-12-02选择适合你的数据分析工具 在进行数据分析时,选择合适的工具至关重要。不同工具有各自的特点和适用场景,因此了解每种工具的优 ...
2024-12-021. 技术驱动与市场需求 数据分析领域正随着技术的不断革新而迎来蓬勃发展。大数据、人工智能(AI)、机器学习(ML)等前沿技术的 ...
2024-12-02在当今数字化浪潮中,数据分析扮演着关键角色。数据分析能力的提升引领了行业趋势,深刻影响着各个领域:从技术进步到市场需求增 ...
2024-12-02如何用Excel提升数据分析能力 在数字时代中,数据是无处不在的。对于从业者而言,掌握数据分析的技能至关重要。而在众多数据处理 ...
2024-12-02初探数据分析世界 数据分析是当今数字化时代的核心。无论你是想拓展专业技能还是仅仅对数据分析感兴趣,掌握各种工具至关重要。 ...
2024-12-02