
2020-09-28
为了找出color、rarity、flower number、type of species对price的影响,由此,price为因变量,color、rarity、flower number、type 为自变量。
研究自变量对因变量的影响,可以选用的方法有两种,一种是传统的线性回归模型OLS,另一种是广义线性模型GLM(Generalized Linear Model)。传统模型(OLS)要求因变量服从正态分布,广义线性模型(GLM)则适用的范围更广,不要求因变量一定服从正态分布,并且方差也可以不稳定。
第一步:考察因变量price的分布类型。
基于以上的分析,为了判断应该适用OLS还是使用GLM。需要先对因变量price的分布状况进行分析。首先,检验因变量price是否服从正态分布,检验的结果如下:
Table 1 Tests of Normality
|
Kolmogorov-Smirnova |
Shapiro-Wilk |
||||
|
Statistic |
df |
Sig. |
Statistic |
df |
Sig. |
Price |
.149 |
156 |
.000 |
.818 |
156 |
.000 |
a. Lilliefors Significance Correction |
上表是正态性检验的结果,K-S检验和S-W检验的SIG.全部小于0.05.由此可以知道,因变量price不服从正态分布。因此,研究color、rarity、flower number、type of species对price的影响不能选用传统线性模型(OLS)分析,必须选用GLM模型。
通过price不服从正态分布这一结论,得出必须选用GLM模型之后,还需要进一步找出因变量price到底服从哪种分布。经过尝试,得出因变量price服从Gamma分布。
第二步:GLM分析
确定选用GLM模型和因变量price是服从Gamma分布的,进行GLM分析,结果如下:
Table 2
Case Processing Summary |
||
|
N |
Percent |
Included |
156 |
100.0% |
Excluded |
0 |
0.0% |
Total |
156 |
100.0% |
上表的结果陈述了,参与分析的案例个数为156。
Table 3
Categorical Variable Information |
||||
|
N |
Percent |
||
Factor |
Color |
Green |
30 |
19.2% |
Red |
30 |
19.2% |
||
White |
29 |
18.6% |
||
Black |
30 |
19.2% |
||
Yellow |
22 |
14.1% |
||
Blue |
15 |
9.6% |
||
Total |
156 |
100.0% |
||
Rarity |
Rare |
83 |
53.2% |
|
Commom |
73 |
46.8% |
||
Total |
156 |
100.0% |
||
FlowerNumber |
Single flower |
72 |
46.2% |
|
Multiple flowers |
84 |
53.8% |
||
Total |
156 |
100.0% |
||
TypeofSpecies |
Native species |
61 |
39.1% |
|
First generation hybrids |
42 |
26.9% |
||
Complex hybrids |
53 |
34.0% |
||
Total |
156 |
100.0% |
上表的结果展现了4个自变量中每个类别的选择的人数及其占比。
Table 4
Goodness of Fita |
|||
|
Value |
df |
Value/df |
Deviance |
68.838 |
146 |
.471 |
Scaled Deviance |
166.574 |
146 |
|
Pearson Chi-Square |
68.353 |
146 |
.468 |
Scaled Pearson Chi-Square |
165.400 |
146 |
|
Log Likelihoodb |
-767.832 |
|
|
Akaike's Information Criterion (AIC) |
1557.665 |
|
|
Finite Sample Corrected AIC (AICC) |
1559.498 |
|
|
Bayesian Information Criterion (BIC) |
1591.213 |
|
|
Consistent AIC (CAIC) |
1602.213 |
|
|
Dependent Variable: Price Model: (Intercept), Color, Rarity, FlowerNumber, TypeofSpecies |
|||
a. Information criteria are in small-is-better form. |
|||
b. The full log likelihood function is displayed and used in computing information criteria. |
上表是GLM模型的拟合优度分析结果,拟合优度分析是用于反映模型总体上对数据信息的表达是否充分。Deviance拟合优度检验法和Pearson Chi-Square拟合优度检验法计算出的显著性水平分别为0.471和0.468,均大于0.05,由此可以知道,模型的拟合情况良好,即模型能够比较真实可靠地反映出数据。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
完 谢谢观看
上一篇: 【CDA招聘】培训讲师 下一篇: SPSS如何录入百分比数据