京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为了找出color、rarity、flower number、type of species对price的影响,由此,price为因变量,color、rarity、flower number、type 为自变量。
研究自变量对因变量的影响,可以选用的方法有两种,一种是传统的线性回归模型OLS,另一种是广义线性模型GLM(Generalized Linear Model)。传统模型(OLS)要求因变量服从正态分布,广义线性模型(GLM)则适用的范围更广,不要求因变量一定服从正态分布,并且方差也可以不稳定。
第一步:考察因变量price的分布类型。
基于以上的分析,为了判断应该适用OLS还是使用GLM。需要先对因变量price的分布状况进行分析。首先,检验因变量price是否服从正态分布,检验的结果如下:
Table 1 Tests of Normality
|
|
Kolmogorov-Smirnova |
Shapiro-Wilk |
||||
|
|
Statistic |
df |
Sig. |
Statistic |
df |
Sig. |
|
Price |
.149 |
156 |
.000 |
.818 |
156 |
.000 |
|
a. Lilliefors Significance Correction |
||||||
上表是正态性检验的结果,K-S检验和S-W检验的SIG.全部小于0.05.由此可以知道,因变量price不服从正态分布。因此,研究color、rarity、flower number、type of species对price的影响不能选用传统线性模型(OLS)分析,必须选用GLM模型。
通过price不服从正态分布这一结论,得出必须选用GLM模型之后,还需要进一步找出因变量price到底服从哪种分布。经过尝试,得出因变量price服从Gamma分布。
第二步:GLM分析
确定选用GLM模型和因变量price是服从Gamma分布的,进行GLM分析,结果如下:
Table 2
|
Case Processing Summary |
||
|
|
N |
Percent |
|
Included |
156 |
100.0% |
|
Excluded |
0 |
0.0% |
|
Total |
156 |
100.0% |
上表的结果陈述了,参与分析的案例个数为156。
Table 3
|
Categorical Variable Information |
||||
|
|
N |
Percent |
||
|
Factor |
Color |
Green |
30 |
19.2% |
|
Red |
30 |
19.2% |
||
|
White |
29 |
18.6% |
||
|
Black |
30 |
19.2% |
||
|
Yellow |
22 |
14.1% |
||
|
Blue |
15 |
9.6% |
||
|
Total |
156 |
100.0% |
||
|
Rarity |
Rare |
83 |
53.2% |
|
|
Commom |
73 |
46.8% |
||
|
Total |
156 |
100.0% |
||
|
FlowerNumber |
Single flower |
72 |
46.2% |
|
|
Multiple flowers |
84 |
53.8% |
||
|
Total |
156 |
100.0% |
||
|
TypeofSpecies |
Native species |
61 |
39.1% |
|
|
First generation hybrids |
42 |
26.9% |
||
|
Complex hybrids |
53 |
34.0% |
||
|
Total |
156 |
100.0% |
||
上表的结果展现了4个自变量中每个类别的选择的人数及其占比。
Table 4
|
Goodness of Fita |
|||
|
|
Value |
df |
Value/df |
|
Deviance |
68.838 |
146 |
.471 |
|
Scaled Deviance |
166.574 |
146 |
|
|
Pearson Chi-Square |
68.353 |
146 |
.468 |
|
Scaled Pearson Chi-Square |
165.400 |
146 |
|
|
Log Likelihoodb |
-767.832 |
|
|
|
Akaike's Information Criterion (AIC) |
1557.665 |
|
|
|
Finite Sample Corrected AIC (AICC) |
1559.498 |
|
|
|
Bayesian Information Criterion (BIC) |
1591.213 |
|
|
|
Consistent AIC (CAIC) |
1602.213 |
|
|
|
Dependent Variable: Price Model: (Intercept), Color, Rarity, FlowerNumber, TypeofSpecies |
|||
|
a. Information criteria are in small-is-better form. |
|||
|
b. The full log likelihood function is displayed and used in computing information criteria. |
|||
上表是GLM模型的拟合优度分析结果,拟合优度分析是用于反映模型总体上对数据信息的表达是否充分。Deviance拟合优度检验法和Pearson Chi-Square拟合优度检验法计算出的显著性水平分别为0.471和0.468,均大于0.05,由此可以知道,模型的拟合情况良好,即模型能够比较真实可靠地反映出数据。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11