
▲《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》中强调:“加快数字化发展。发展数字经济,打造具有国际竞争力的数字产业集群。”
▲ 2019世界人工智能大会发布,全国AI&大数据人才需求呈快速增长态势,约为4年前的12倍。
▲ 麦肯锡公司的研究预测,可以利用大数据分析来做出有效决策的经理和分析师的人才缺口高达到150万。
无论是从国家发展的战略方向,还是就业市场的巨大规模导向,都揭示了数据分析师技能的重要性,这是一个跨时代的代表性技能。
在这个用数据说话,也靠数据竞争的时代,请搭上这趟幸福列车,奔向美好未来!!!
俗话说:越热的行业(岗位),越需要认证。越硬的技能,越容易被认证。因此,如果您想进入或转行热门行业,就不得不先知己知彼,方能百战不殆!
为了让更多的人遇见未来更美的自己,CDA数据分析师考试中心于今年1月全新升级,发布了新版考试大纲和各级考试时间及报名方式等信息!
01
“CDA数据分析师认证”是一套科学化,专业化,国际化的人才考核标准,共分为CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ三个等级。
认证覆盖行业包括互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。
CDA数据分析师行业标准由国际范围数据科学领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、共识性、前沿性,符合当今全球数据科学技术潮流,为各行业企业和机构提供数据人才参照标准。
02
类似CFA、PMP、ACCA快速崛起并成为行业内普遍认可的证书一样,CDA数据分析师认证迅速发展,得到了教育部主管协会中国成人教育协会认可,跻身为2020年“终身学习品牌项目”。
6年时间,CDA专注打造数字化人才通用认证标准,保持着携手共建、合作共赢的开放心态,以 CDA I 级、II 级、III 级通用认证为基础,融合各行各业数据应用场景,打造数字化人才的世界标准。
03
全新升级后的大纲,在快速建立起数字化人才通用认证标准的基础上,融入了各行各业对于数字化人才的个性化需求,更加聚焦数据分析,考试知识点更加丰富,考试时间和方式更加灵活。
想领取CDA数据分析师新版大纲 的同学,可直接索取哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05