
如何用SPSS探测及检验异常值
一、采用数据探索过程探测异常值
SPSS菜单实现程序为: 主菜单–>“Analyze”–>“Descriptive Statistics”–>“Explore……”选项–>“Statistics”按钮–>选中“Outliers”复选框。输出结果中将列出5个最大值和5个最小值作为异常的嫌疑值。
二、采用箱线图(boxplot)探测异常值
箱线图比较直观、形象,易于理解,因此它在统计分析中占有非常重要的地位。
1. 利用上述的数据探测过程,在“Explore”对话框中单击“Plots”,出现如图2所示的对话框,通过“Boxplots”方框可以确定箱线图的生成方式。“Factor levels together”复选框表示将要为每个因变量创建一个箱线图,“Dependent together”复选框表示将为每个分组变量水平创建箱线图,“None”复选框表示不创建箱线图。
2. 直接利用SPSS中的画图功能实现箱线图,SPSS给出了两种箱线图,一种是基本箱线图,另一种是交互式箱线图。基本箱线图的SPSS菜单实现为:点击主菜单中的“Graphs”选项,在弹出的一级菜单中选择“Boxplot……”选项。交互式箱形图的SPSS菜单实现为:点击主菜单中的“Graphs”选项,在弹出的一级菜单中点击“Interactive”选项,在弹出的二级菜单中选择“Boxplot……”选项。下面仍以A公司雇员分工种的开始工资为例构造基本箱线图(如图3)。箱线图中的“○”表示可疑的异常值,此处异常值的确定采用的是“五数概括法”,即:变量值超过第75百分位点和25百分位点上变量值之差的1.5倍(箱体上方)或变量值小于第75百分位点和25百分位点上变量值之差的1.5倍(箱体下方)的点对应的值。
三、SPSS 14 后的新功能 Data –> Validation:???如何设置。。。
四、Z分标准化法(3δ法):±3δ 以外的数据为高度异常值,应予剔除。
五、数据异常值的检验
SPSS中没有提供直接检验异常数据的工具,但是使用SPSS能使异常值的检验工作变得非常方便。通过SPSS中的Frequencies等过程,可以对指定变量的数据同时得到均值、方差等统计量,代入上述的公式,结合查表,很快就能得出检验结果。在多个异常数据下,使用SPSS更显方便,因为剔除前一个异常数据后,需要对剩余的数据重新计算均值和方差,如果数据很多,用手工计算将是很烦琐的事情,而且准确度不高。而通过SPSS,只需要重新选择数据以后,重复一次Frequencies过程的操作就可以了。
分别对含异常值和删去异常值两种情况下的数据进行分析,并比较后才能增加可信度,避免误删。
六、SPSS中异常值的剔除
发现异常值后,把大于等于最小异常值或小于等于最大异常值的值用Data主菜单里的Cases Select子菜单里的条件设置按钮,就可以自动剔除异常值。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22