京公网安备 11010802034615号
经营许可证编号:京B2-20210330
八大趋势看透大数据分析的未来_数据分析师考试
Intuit公司负责数据工程的副总裁Bill Loconzolo已两脚踏入了数据湖。而Smarter Remarketer的首席数据科学家Dean Abbott也径直走进了云中。当我们说到大数据[注]和分析的前沿时,它既包括数据湖(以原生格式存储海量数据),当然也包括云计算[注]。尽管这些技术选项距离成熟还很远,但我们肯定不能选择一味的等待和观望。 现实情况虽然是,各种大数据工具在不断涌现,但Hadoop平台的前途尚未达到让企业能够依赖的程度,Loconzolo说。然而大数据和分析技术演变得如此之快,企业必须做出抉择,要么涉足其中,要么就得冒落后的风险。
在过去,新兴技术可能需要几年时间才能成熟。而现在,解决方案的迭代和升级只需要几个月,甚至几周时间,那么,在你的观察名单或者实验室里,最重要的新兴技术和趋势是什么呢?当我们用这样的问题去问很多IT高管、咨询师和行业分析师时,得到了如下的答案。 1、云中的大数据分析 Hadoop框架和一组工具可用于处理非常大的数据集,它最初是为了物理机集群而设计的。
但现在情况有了变化。Forrest分析师Brian Hopkins说:“如今已有很多技术可用于处理云中的数据。”实例包括亚马逊Redshift所托管的BI数据仓库、谷歌BigQuery数据分析服务、IBM Bluemix云平台,以及亚马逊Kinesis数据处理服务等。大数据的未来状态将是企业端和云端的某种混合态。 从事零售业分析与营销服务的SaaS[注]厂商Smarter Remarketer最近已从其内部的Hadoop和MongoDB数据库基础架构转移到了亚马逊Redshift云数据仓库上。
该公司主要收集线上和线下的零售销售数据、消费者统计数据及实时行为数据,然后对其作分析,帮助零售商创建有针对性的消息发送,以便吸引顾客的响应(某些情况下可能是实时的响应)。 Abbortt称,Redshift对于Smarter Remarketer的数据需求来说,更具成本效益,特别是其针对结构化数据的范围广泛的报表功能。作为一种托管服务,Redshift既可扩展,使用起来也相对简单。
它在虚拟机上的扩展成本要比购买由我们自己管理的物理机便宜不少。 Intuit也开始谨慎地在向云分析转移,因为它需要一个安全、稳定和可审计的环境。这家财务软件公司一方面计划在自己私有的Intuit分析云中保留一切资源,另一方面,又在与亚马逊和Cloudera合作,计划构建一个公私混合的、高度可用而且安全的分析云,Loconzolo说。对于像Intuit这样销售在云中运行的产品厂商来说,向云的迁移是不可避免的。一旦在企业端分析数据的成本高到无法承受时,就只能把所有的数据迁到云中去。
2、Hadoop:新的企业数据操作系统 Hopkins认为,各种分布式分析框架,如MapReduce,正在演变为分布式资源管理器,它们会逐渐地将Hadoop转变为一种通用的数据操作系统。有了Hadoop这样的分布式文件存储系统,你就能执行很多不同的数据操控和分析任务。
这种变化对企业来说意义何在呢?和SQL一样,MapReduce、内存计算、流处理、图形分析和其他类型的工作负载都能够以适当的性能在Hadoop上运行,越来越多的企业会把Hadoop当作企业数据集中库来使用。这样的能力,即针对Hadoop上的数据执行多种不同类型查询和操控的能力,将使其成为一种低成本的通用平台,企业想要分析的任何数据都可以放在其上进行分析。Hopkins说。 Intuit已经开始在构建自己的Hadoop基础。“我们的战略是利用MapReduce和Hadoop,构造Hadoop分布式文件系统,长期目标是让人和产品之间所有类型的互动得以产生,”Loconzolo说。
3、大数据湖 传统的数据库理论会告诉你,在进入任何数据之前,首先得设计好数据集。而数据湖,也称企业数据湖或企业数据集中库,可能会彻底改变传统模式,普华永道美国咨询业务负责人兼首席技术专家Chris Curran说。也就是说,我们会将各种数据资源倾倒进一个大的Hadoop仓库中去,而不会事先设计什幺数据模型。
相反地,我们会提供各种工具,再配上对数据湖中现存数据的顶层定义,供人们去分析数据。这样,人们就可随着对数据湖的逐步深入而构建起自己的数据视图。这正是构建一个大规模数据库的增量化的、有机的模型。
不过,这种方法也存在不足,那就是对数据分析人员的技术要求较高。 Loconzolo说,作为Intuit分析云的一个组成部分,Intuit也有一个数据湖,包括用户的点击流数据、企业数据和第三方数据,但重点是围绕数据湖对工具进行所谓的“民主化”,让商业人士都能有效地使用它。Loconzolo说,在Hadoop里构建一个数据湖,他的一个担心是Hadoop平台并未真正实现企业就绪。我们希望它具备数十年来传统企业数据库所具备的所有功能――监控访问控制、数据加密、保护数据,并可跟踪数据从源到目标的传递路径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05