
八大趋势看透大数据分析的未来_数据分析师考试
Intuit公司负责数据工程的副总裁Bill Loconzolo已两脚踏入了数据湖。而Smarter Remarketer的首席数据科学家Dean Abbott也径直走进了云中。当我们说到大数据[注]和分析的前沿时,它既包括数据湖(以原生格式存储海量数据),当然也包括云计算[注]。尽管这些技术选项距离成熟还很远,但我们肯定不能选择一味的等待和观望。 现实情况虽然是,各种大数据工具在不断涌现,但Hadoop平台的前途尚未达到让企业能够依赖的程度,Loconzolo说。然而大数据和分析技术演变得如此之快,企业必须做出抉择,要么涉足其中,要么就得冒落后的风险。
在过去,新兴技术可能需要几年时间才能成熟。而现在,解决方案的迭代和升级只需要几个月,甚至几周时间,那么,在你的观察名单或者实验室里,最重要的新兴技术和趋势是什么呢?当我们用这样的问题去问很多IT高管、咨询师和行业分析师时,得到了如下的答案。 1、云中的大数据分析 Hadoop框架和一组工具可用于处理非常大的数据集,它最初是为了物理机集群而设计的。
但现在情况有了变化。Forrest分析师Brian Hopkins说:“如今已有很多技术可用于处理云中的数据。”实例包括亚马逊Redshift所托管的BI数据仓库、谷歌BigQuery数据分析服务、IBM Bluemix云平台,以及亚马逊Kinesis数据处理服务等。大数据的未来状态将是企业端和云端的某种混合态。 从事零售业分析与营销服务的SaaS[注]厂商Smarter Remarketer最近已从其内部的Hadoop和MongoDB数据库基础架构转移到了亚马逊Redshift云数据仓库上。
该公司主要收集线上和线下的零售销售数据、消费者统计数据及实时行为数据,然后对其作分析,帮助零售商创建有针对性的消息发送,以便吸引顾客的响应(某些情况下可能是实时的响应)。 Abbortt称,Redshift对于Smarter Remarketer的数据需求来说,更具成本效益,特别是其针对结构化数据的范围广泛的报表功能。作为一种托管服务,Redshift既可扩展,使用起来也相对简单。
它在虚拟机上的扩展成本要比购买由我们自己管理的物理机便宜不少。 Intuit也开始谨慎地在向云分析转移,因为它需要一个安全、稳定和可审计的环境。这家财务软件公司一方面计划在自己私有的Intuit分析云中保留一切资源,另一方面,又在与亚马逊和Cloudera合作,计划构建一个公私混合的、高度可用而且安全的分析云,Loconzolo说。对于像Intuit这样销售在云中运行的产品厂商来说,向云的迁移是不可避免的。一旦在企业端分析数据的成本高到无法承受时,就只能把所有的数据迁到云中去。
2、Hadoop:新的企业数据操作系统 Hopkins认为,各种分布式分析框架,如MapReduce,正在演变为分布式资源管理器,它们会逐渐地将Hadoop转变为一种通用的数据操作系统。有了Hadoop这样的分布式文件存储系统,你就能执行很多不同的数据操控和分析任务。
这种变化对企业来说意义何在呢?和SQL一样,MapReduce、内存计算、流处理、图形分析和其他类型的工作负载都能够以适当的性能在Hadoop上运行,越来越多的企业会把Hadoop当作企业数据集中库来使用。这样的能力,即针对Hadoop上的数据执行多种不同类型查询和操控的能力,将使其成为一种低成本的通用平台,企业想要分析的任何数据都可以放在其上进行分析。Hopkins说。 Intuit已经开始在构建自己的Hadoop基础。“我们的战略是利用MapReduce和Hadoop,构造Hadoop分布式文件系统,长期目标是让人和产品之间所有类型的互动得以产生,”Loconzolo说。
3、大数据湖 传统的数据库理论会告诉你,在进入任何数据之前,首先得设计好数据集。而数据湖,也称企业数据湖或企业数据集中库,可能会彻底改变传统模式,普华永道美国咨询业务负责人兼首席技术专家Chris Curran说。也就是说,我们会将各种数据资源倾倒进一个大的Hadoop仓库中去,而不会事先设计什幺数据模型。
相反地,我们会提供各种工具,再配上对数据湖中现存数据的顶层定义,供人们去分析数据。这样,人们就可随着对数据湖的逐步深入而构建起自己的数据视图。这正是构建一个大规模数据库的增量化的、有机的模型。
不过,这种方法也存在不足,那就是对数据分析人员的技术要求较高。 Loconzolo说,作为Intuit分析云的一个组成部分,Intuit也有一个数据湖,包括用户的点击流数据、企业数据和第三方数据,但重点是围绕数据湖对工具进行所谓的“民主化”,让商业人士都能有效地使用它。Loconzolo说,在Hadoop里构建一个数据湖,他的一个担心是Hadoop平台并未真正实现企业就绪。我们希望它具备数十年来传统企业数据库所具备的所有功能――监控访问控制、数据加密、保护数据,并可跟踪数据从源到目标的传递路径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30