
使用大数据报高考志愿的正确姿势_数据分析师考试
最近,全国各地区陆续进入志愿填报的高峰期。针对考生和家长的填报困惑,许多互联网公司推出了各种辅助报志愿的“神器”,其中既有百度等传统互联网巨头,也有IPIN这样的创业公司。
要知道有痛点就有商机,对于大多数考生和家长而言,报志愿确实是一个非常大的痛点,这个痛点的关键在于:他们对全国高校和专业情况的不了解,对其他人的报考情况更是无从获知,这就导致他们在填志愿的时候无从下手、不敢下手。
互联网公司给出的解决方案的核心基本都是大数据。通过大数据还原历史情况,通过大数据告诉你其他人的报考情况。这能在一定程度解决大多数人的需求。但是你如果寄望于他们给出的结果真正完全匹配每一个人的精准需求,可能还尚需时日,甚至并不可能完全实现,因为报志愿过程有其自身的独特性。
那么,我们应该如何看待这些产品,以及考生应该如何使用这些产品?
为什么是大数据?
要弄清上述问题,首先就要弄明白高考报志愿的核心问题:“志愿撞车”。
“撞车”究其原因在于信息不对称,你并不知道有多少人准备报和你一样的志愿。
举个例子,经历过高考的人都知道,以往的录取线经常会误导,大家时常会报一些去年分数比较低的学校,由于这样想的人多了,今年的录取线反而高了。
对于解决这个问题的办法,大家很容易想到大数据,因为某种程度上,大数据具备预知的能力。而预知的结果,能够帮使用者做更合适的判断和决策。比如,在国外,不少公司和政府已经应用大数据来提高流感预测的准确性、显著促进购买意愿等等。
一个比较典型的个案就是Target超市以20多种怀孕期间孕妇可能会购买的商品为基础,将所有用户的购买记录作为数据来源,通过构建模型分析购买者的行为相关性,能准确的推断出孕妇的具体临盆时间,这样Target的销售部门就可以有针对的在每个怀孕顾客的不同阶段寄送相应的产品优惠卷。
但是你不得不承认,这并非意味着大数据是万能的,而且很多时候,真正的结果是逆向发展的。因此使用的时候还需要更多理性的判断。
大数据如何产生作用?
那么大数据具体是如何解决高考志愿填报的问题的?
以手机百度为例,考生只需要在手机中的百度应用中输入“高考”,就跳转到一个“高考志愿填报助手”页面中,这就是一款典型的大数据类的产品。
考生只需要输入成绩和地区,就能够获得十所相对适合自己分数和大学推荐,并且可以实时了解到具体学校的报考难度,为最终填报志愿提供参考。
这个过程,大数据有两个层面的作用:
第一:最大限度的还原往年的考生和录取信息,设定几个关键参数,让考生对各高校分数线有直观的了解,在大面上有一个总体的了解。
现在有非常多的基于这个层面的APP应用,但是可以看到这些应用参差不齐,需要广大家长和考生进行筛选和判断。
另外,更重要的一点是,每一个考生在搜索和点击的过程,其实也是把自己的分数以及关注学校的情况分享给其他同学的过程。当使用的考生越多,收集来的大数据结果也就越接近最终考生的报考情况,给考生的建议和参考也相对更精准。
比如高考助手中有一个热力图,不断的通过网民输入关键词背后的判断,进而动态的判断大家关注点,从而实现预判。百度实际上就是利用对网民需求的动态分析,为考生提供高校推荐、高校报考难度预估以及专业推荐等信息。
这种虽然无法非常准确的知道每个人真实的感受与想法,但是由于加入了更多实时的内容与观点,所以相对来说更加靠谱一些,而这也是大数据发展的一个方向。
因此,我们要再次提醒每一位考生,在这个互联网时代使用互联网产品辅助报志愿是有必要的,但确实要更理性,毕竟900万考生是一个群体,而你是一个个体
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03