
大数据 让经济运行迅速智能化_数据分析师考试
6月19日,浙商大会暨“‘互联网+’峰会”在杭州举行。围绕着大数据、“互联网+”、工业4.0 、O2O 创业等当下热点问题,企业、专家、投资者进行了多轮热烈的探讨。
在峰会设置的主论坛报告会上,中国工程院院士潘云鹤指出,世界各国最近几年来都十分重视大数据,美国奥巴马政府2012年宣布投资2亿美元推进大数据,2013年英国政府宣布计划向大数据技术投资1.89亿英镑,欧洲市场迅速跟进。美国信息技术和创新基金会2013年11月的一个报告认为,如果说石油是20世纪经济发展的助推剂,大数据将成为21世纪经济发展的助推剂。
大数据和经济战略、技术战略、产业战略一样,就发生在我们面前,其本质是什么?潘云鹤说,中国工程院的研究认为,其本质是世界的空间正在进行一次巨大变化,这个变化的本质是世界从原来的二元空间变成三元空间。近年来信息力量迅速壮大,已经成长为物理世界、人类社会两极之外的新一极—信息世界。
信息早就存在,为什么直到现在才开始变成新的一极,引起世界如此大的变化?潘云鹤解释说,那是因为现在出现了互联网、移动通信、搜索技术。在互联网之间进行各种各样的知识搜集、数据搜集行动,形成了很多像谷歌那样的公司。就这样,我们进入到一个大数据时代。
谈及大数据的应用,潘云鹤举例说,这几年北京的PM2.5很严重,但每一次访问专家时,他们分析的导致PM2.5的原因都不一样,因为那是专家根据实验室研究结果而得出的。实际上,PM2.5参数变化非常快,不用大数据分析是不行的。
同样,巴黎政府发现PM2.5没有测准的原因,是因为监测点太少了。于是,巴黎政府动员几百个市民,每人发一个传感器,最后把巴黎市的PM2.5情况搞清楚了,包括根源在哪里、哪些是主要原因。潘云鹤说,把测PM2.5的传感器装在手机里、出租车上,用互联网方式把数据搜集起来,我们就可以准确地监测PM2.5。
潘云鹤介绍,大数据和传感器有密切关系,现在的传感器做得非常小,只要把传感器放到飞机的蒙皮里面去,就可以通过收集数据的方法感知飞行时的风速、温度和压力。这些传感器每一点的形状在1毫米以内,而且有动力源,能够把数据传到飞机内部。这样一来,飞机在飞行过程中,我们便可以知道它的受力情况,就可以大大改善飞行情况,同时飞行员的飞行水平也可以得到提高。另外,还可以知道飞机下一步应该如何改进。更重要的是,传感器还会对我们的生活产生巨大影响,比如医疗镜、睡眠评测仪器等的应用。
谈及中国的大数据战略,潘云鹤认为,大数据是中国发展的一大挑战和一大机遇。要充分利用这一机遇,中国需要抓好三类最重要的大数据应用:一是城市大数据应用,包括城市建设、环境、经济、教育、医疗卫生等数据,越来越多的巨型数据中心正在涌现,需要权威、技术和市场的合作;二是行业与企业大数据,如物流、微观市场研究等;三是科技知识大数据应用。
大数据在研究宏观、中观、微观经济和社会问题上都很重要。潘云鹤指出,城市大数据、行业与企业大数据、科技大数据是最重要的大数据,我们可以利用体制的优越性,政、产、学结合,果断地占领大数据战略的制高点,使中国的运行迅速智能化。潘云鹤说,巨量的数据聚集在一起会产生非常重要的新的知识。为此,我们需要汇集各种数据源,要把互联网、数字图书馆、专业数据汇集在一起,不同数据之间要互通,这是一个巨大工程,如果做好了贡献是很大的。
据潘云鹤透露,工程院正在进行一个有关大数据的新项目—《新本草纲目》。他说,“中国中草药的生产、开发不是最好的,但我们要搞成一个新的知识系统,把大数据聚集起来,也就是把单一药材,把几千年的配方,把各种疾病互相打通,把单味药材、成分数据、药理数据互通联通。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29