京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据风口要抓好三类大应用_数据分析师考试
人类正进入大数据时代,各国都在关注这一变化。中国也不例外。对此,潘云鹤指出,中国政府要抓好城市大数据、行业和企业大数据、科技大数据这三类重要大数据的应用,为民众、企业、政府做好服务。
与网上呈现的大数据信息相比,城市大数据则更重要、更富有应用价值,它涵盖了城市建设、环境、企业产业、教育、医疗卫生、食品、文化等多方面。
那么,谁有能力聚集和连接这些数据呢?是公司、公共机构,还是政府?潘云鹤认为,这要依靠权威机构、技术和市场的合作。
其中,政府应在城市大数据的管理与开放中起主导作用。这主要表现在:促进知识服务业发展,创造新的市场与技术;确保个人信息不受侵犯、公共信息安全与共享;提高城市管理能力与决策水平,更好为市民提供服务。
中国工业化与城市化的环境和政府结构有利于发展城市大数据。如果做得好,中国可以用城市大数据来深化智能城市的发展。”潘云鹤说。
在潘云鹤看来,把行业和企业大数据应用好,对我国经济结构调整和经济转型升级极为有利。他举例说,我国物流业整体能力不强,尤其是占国内运输75%以上运量的公路物流,相比发达国家落后近20年。在欧美,物流成本占物价的10%~15%,中国为20%~40%;欧美的物流费用占GDP的10%,中国为18%。
有货的找不到合适的司机,有车的找不到合适的货源。这就是大数据能够发挥作用的地方。”潘云鹤说。
传化公路港平台在这方面进行了有益的尝试:线上线下联动,以卡车司机为主要服务群体,以全网运力交易市场为核心模式,全力打造了全网络化服务产品,组成一个公路物流的信息化智能指挥体系,实现全网范围内的运力调度采购、实时监控。
潘云鹤介绍说,该平台利用大数据提升了物流效率,降低了物流成本,使配货时间从72小时降低到6~9小时,平均降低工业企业运输成本40%。同时,通过集约化管理,有效改善了公路物流“小、散、乱、差”的面貌。
工业结构调整、产业升级,不是空喊口号。中国的经济管理部门应该去研究行业生态环境、城市生产生态环境,运用大数据具体分析什么是薄弱环节,进而将新型城镇化、深度信息化和工业化升级版深度融合。”潘云鹤强调。
关于科技大数据的应用,潘云鹤谈到,中国工程院从2012年开始建设中国工程科技知识中心,以连接多个数字图书馆、专业数据库和相关网站,使数据能够从不同的角度重新组织并获得新的认识。
大数据在研究宏观、中观、微观经济和社会问题上都很重要。”潘云鹤说,“我国可以利用体制的优越性,政、产、学结合,果断地占领大数据战略的制高点,使其运行迅速智能化。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21