京公网安备 11010802034615号
经营许可证编号:京B2-20210330
购物中心开展O2O 和数据分析应用存在的问题
线上线下企业都在尝试O2O,大小企业都在寻找符合自身定位的O2O……诚然,O2O是个大话题。接地气地讲,零售业O2O的现状是怎样的呢,其中购物中心业态的O2O具有什么特点以及需要解决的问题呢?
近日凯德商用业务流程与资讯科技部经理张维举等嘉宾通过俱乐部在线就上述问题进行了探讨。
如何看零售O2O现状
O2O的现状,目前大家都是摸着石头过河,不管是线上大鳄BAT,还是线下大鳄如万达等,或是各个创业公司。大家都认为O2O是方向和趋势,或多或少都在参与,但是目前没有成熟可复制的模式。毕竟线下比较重,传统的固有的东西比较复杂,要统一起来,标准化起来,需要一个过程。
购物中心O2O的几大环节
1、入口
购物中心的O2O可能是零售各业态中最复杂的,对流量、入口、大会员、大数据、会员标签、会员积分体系、支付和奖励等环节,都需要通盘考虑。流量和入口,现在普遍做的都是WiFi入口,从线上导流,腾百万、阿里系都在做。
2、会员
入口的下一个环节就是会员。不论腾百万是否靠谱,不得不承认,百度和腾讯的大数据能力及储备、会员体系的完善,是国内数一数二的。腾讯近期刚荣获品牌排行榜第一名,超越了中国移动,这就是对其会员体系的一种认可。可通过积分奖励、WiFi无限、停车免费等手段促进。
3、大数据的采集
会员的下一个环节,就是大数据的采集,这个是重点,也是难点,更是痛点!没有数据的采集和储备,就谈不上会员的经营,谈不上购物中心的O2O。由于购物中心的模式区别于百货,各个商家的经营都是相对独立的,想要切入进去,会有一定的障碍。
(1)销售数据的采集
数据采集最重要的是客流数据和销售数据,客流数据还好办,销售数据的采集涉及到支付环节,支付环节对于有集中收银的购物中心好办,改造POS即可,但是,对于自主收银的模式,是个难点。
目前,国内百货企业主要采用集中收银模式,国美、苏宁也是集中收银。但在一线城市,集中收银的很少,几乎没有。在二线,尤其是三、四线,集中收银的还是比较多的。趋势是,走向集中收银化。
那么,销售数据的缺失如何弥补呢?
难点就在于此。因为租户不愿意让你动它的POS,尤其是强势品牌,或者是总部对各连锁分店的把控流程做得非常标准的情况下。这个难点,不是技术问题,而是商务问题。技术上都好办,改造租户POS是一种最简单的方式。
其他方式:1、自建POS。比如万达的做法是外挂一个万达POS,即自己研发一个POS,摆在租户的收款台边上,作为数据采集用。2、扫描小票,OCR识别。 3、通过引入微信和支付宝的线下支付,来从中获取销售数据。
有了上述技术手段的支持,销售数据的采集是否就可以解决呢?个人认为,虽然不能像线上那样保证完整性,但是各种手段的综合应用,数据的采集会好很多。
凯德MALL的实践体会是,集中收银占比较大的商场,数据的完整性更好一些,自主收银为主的商场,如果商场控制力比较大,数据完整性也很不错。
(2)客流数据的采集
客流数据采集主要依靠WiFi,WiFi的功能一般包括以下几方面:第一,服务。基本的上网服务。别人有,你也得有。虽然上网不能直接带来收益。第二,客流采集。包括客流数量,驻留时间,返店频次,轨迹,新老顾客的判别等等。第三,WiFi的Portal的是一个很好的接触点。
迈外迪在WiFi入口方面做的应该是比较好的,所以被小米、腾讯注资,也是对其一种认可。
除了WiFi,摄像头识别应该是最普遍使用的技术手段,但摄像头的识别率其实不高,受环境的影响很大,比如光线、地面有无水渍、灰尘、客流的速度等等,而且摄像头无法跟踪轨迹,无法计算返店率,无法具体到人。
跟线上相比,虽然WiFi采集还存在很大的差距,但是比以前好很多,所以还是数字信号来得直接,只要算法科学。
纵向相比,以前的数据,大部分来自于市调,样本的误差很大。现在大家对于数据的重视前所未有,这都是在向好的方向发展。不像以前,销售数据的最细粒度是某品牌一天销售的总额,一般不会细到每个时间点,更无法拿到各个消费者的消费数据,商场和消费者其实是隔离的,没有沟通管道,也没有数据的贡献。
4、大数据的应用
数据采集的下一步,就是数据的应用。说的具体点,就是给会员打标签,说的形象点就是给会员画像。比如通过消费偏好、消费频次、返店频次等等,判断TA是时尚达人,还是美食达人,等等。通过画像,来做会员的经营。各种精准营销是从这个节点开始发起的。这样,可以做捆绑销售,比如你19点来吃饭,那我可能会让你消费一定积分,以某个低价来看20点30分的电影,如果那时候电影没有满座的话。
凯德商用一次提取的基本数据量很庞大,很多都是冗余数据,需要剔除,比如,一个人在中庭座位上坐了一小时,每5秒采集一次的话,这个数据有700多次的冗余。二次提取的数据包括客流数量、驻留时间、返店频次、轨迹、新老顾客的判别等等。这些都在可操作的层面,达成了数据分析的成果。
数据的积累不是一蹴而就的,需要一个过程,高层的耐心是关键。所以,Mall的O2O也应该必然是一个一把手工程。投入很大,短期内不见效。比如万达要短期内见效果,不只是绑定BAT那么简单。
5、线上引流
线上引流方面, BAT的手段都差不多。阿里有各种接触点,如淘宝、天猫、淘点点、高德地图、UC等等。阿里本身积累了庞大的消费数据,对于商圈内的用户了解可能比商场自己了解的更深入。阿里曾经把天猫和淘宝的送单数据,叠加在高德地图上,按照客单价等指标,分析区域热点,这是一种尝试。
结 语
总的来说,BAT在比特世界是霸主,在原子世界各个商场才是地头蛇,需要合作。比特世界引领的互联网思维,是以标准化来重新格式化传统领域,但是涉及到原子世界的复杂性的时候,比特霸主可能就没那么左右逢源了。线上有第一第二,没第三第四,但线下没听说哪家地产哪家商家一统江湖的。线下和线上的区别很多,但是最重要的应该是线下有Location这个维度。大家都看到其中的机会,都在尝试,摸着石头过河。
同时,原子世界的鸿沟远比比特世界大的多,要指望O2O一统江湖,短期内彻底完全改造线下,不太现实。但是好处的确很明显。可以从几个垂直的行业入手,比如做的最好的应该是电影和打车,业务简单,流程标准化,切入方便,雕爷也在做美甲,不过这个可能不好办。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29