京公网安备 11010802034615号
经营许可证编号:京B2-20210330
淘宝和网利宝都在用大数据挣钱,你造吗
2003年淘宝诞生,成功超越易趣 (eBay),仅仅数年又成为了中国最大的网购零售平台,也让中国迎来了网购行业的新纪元。
有消息称,淘宝2014年“双11”全日交易额达571.12亿元人民币。不难想象,淘宝如此巨大的交易额背后是有多么庞大的用户群在支撑!据不完全统计,淘宝拥有5亿左右的注册用户数,每天有超过6000万的固定访客,可以说淘宝的成功源于数据的积累!
马云曾说,阿里巴巴本质上就是一家数据公司,做淘宝的目的也不是为了卖货,而是获得所有零售的数据和制造业的数据;做物流也不仅仅为了送包裹,而是要把这些数据合在一起。阿里巴巴对你的了解远远超过你自己,尤其是承载着所有数据的电脑系统会更了解你!如今,我们正从IT时代走向DT时代,即从information technology转向data technology。
阿里巴巴是国内互联网大数据的先驱。自淘宝诞生之初,为了赶超易趣,开始搜集每天的数据,逐渐增强了对数据的粘性。2005年,淘宝研发了第一个数据产品,并迎来第一个数据分析师,成立了第一个数据部门。长期的数据积累、分析、运用,让马云意识到“数据产品要建在一个平台上才有更大的价值”。2008年,国内还没几个人谈论“大数据”的时候,阿里巴巴就把其作为一项公司基本战略,开始建立一个囊括所有与消费相关的数据平台,再以该数据平台为中心建立数据交易中心。
在某种程度来讲,大数据是互联网、信息化程度不断加深的产物,未来将发挥有着强大的功能。大数据的运用让一切变得更加透明,这也要求企业的营销策略要发生重大转变,要以我为中心变成以他人为中心,尤其是要以客户为中心,满足用户的友好体验。
尤其是在新兴的互联网金融领域,不少投资者因“风险控制”对P2P心存芥蒂,平台跑路、平台自融、自设基金池等诸多问问频频出现,引发了诸多思考,但从投资人角度来讲最关心的莫过于资金安全问题。从行业的发展来看,很多有第三方担保机构、小贷公司、即便是有银行托管的平台,都难以打消投资者的安全顾虑。其实,在DT时代,数据才是最有说服力的。不管是客户的营销,还是风控,如果能将大数据合理运用,都将事半功倍!
作为互联网金融行业的新秀,网利宝在细分领域里也做着像淘宝一样的事情。
淘宝给买家和卖家提供了一个交易的平台,而网利宝的本质也是一个信息中介,给借款端和融资端提供交易的场所。在网利宝,有借款需求的中小企业可以借钱,有投资需求的客户可以理财,双方自由交易。
目前,网利宝已经研发了自己的IT数据系统来防范风险。
网利宝CEO赵润龙说, IT数据系统的运用,对于网利宝的成本、效率、风控水平都有很大的提升。
以前,如果企业去银行贷款,银行需要先行派专人考察,调研,才能办理,但人是有成本的,不管是100万贷款,还是1个亿的贷款都要从头到尾摸个遍,以传统人的方式做风控对中小企业实际上物力成本、时间成本是非常高的,尤其是对于中小企业这种短期资金周转服务,银行是就不太愿意去做的。
IT数据系统强调贷前数据的积累,打造风险闭环。
因为网利宝专注于做企业信贷业务,当确定要和哪个行业合作后,首先会找到行业里龙头合作伙伴,一般是与大型企业或者上市公司绑定战略合作,通过该行业里的网络布局,实现IT数据系统的数据对接,这些数据往往是关于行业细分领域里中小企业的。其中,网利宝后台IT系统是收集核心数据的关键所在,可以通过模型分析,确定企业信用好坏,是否符合信贷标准。这样一来,网利宝在行业每个细分领域里涉及的风控模式基本上都是打造风控闭环。
此外,该数据系统在数据录入上没有容量限制,在数据的分析、使用上也更加智能、高效、便捷,也有效保障了网利宝即使交易达20亿,也无一例逾期或违约。DT时代,网利宝完全依赖数据对客户的信用程度作分析,将数据转化为信用,将信用转化为财富,克服了传统银行冗杂的审核程序、低效和高成本等难题。
如今,互联网金融正用互联网的技术、互联网的思想影响、完善,甚至改变着传统行业。网利宝业内独创“产融结合”模式,以产业为切入点,深耕行业细分领域,用互联网金融的方式为产业链中下游一些有借贷需求的中小企业提供融资支持,已经涉足汽车、红木、物流、珠宝、光电等十个传统行业,并在以互联网思维带动这些行业的转型。作为一个在线理财服务平台,网利宝打破传统理财的限制和模式,以专业、高效、贴心的金融服务为近30万的客户带去了极致的投资体验和私人理财的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22