京公网安备 11010802034615号
经营许可证编号:京B2-20210330
淘宝和网利宝都在用大数据挣钱,你造吗
2003年淘宝诞生,成功超越易趣 (eBay),仅仅数年又成为了中国最大的网购零售平台,也让中国迎来了网购行业的新纪元。
有消息称,淘宝2014年“双11”全日交易额达571.12亿元人民币。不难想象,淘宝如此巨大的交易额背后是有多么庞大的用户群在支撑!据不完全统计,淘宝拥有5亿左右的注册用户数,每天有超过6000万的固定访客,可以说淘宝的成功源于数据的积累!
马云曾说,阿里巴巴本质上就是一家数据公司,做淘宝的目的也不是为了卖货,而是获得所有零售的数据和制造业的数据;做物流也不仅仅为了送包裹,而是要把这些数据合在一起。阿里巴巴对你的了解远远超过你自己,尤其是承载着所有数据的电脑系统会更了解你!如今,我们正从IT时代走向DT时代,即从information technology转向data technology。
阿里巴巴是国内互联网大数据的先驱。自淘宝诞生之初,为了赶超易趣,开始搜集每天的数据,逐渐增强了对数据的粘性。2005年,淘宝研发了第一个数据产品,并迎来第一个数据分析师,成立了第一个数据部门。长期的数据积累、分析、运用,让马云意识到“数据产品要建在一个平台上才有更大的价值”。2008年,国内还没几个人谈论“大数据”的时候,阿里巴巴就把其作为一项公司基本战略,开始建立一个囊括所有与消费相关的数据平台,再以该数据平台为中心建立数据交易中心。
在某种程度来讲,大数据是互联网、信息化程度不断加深的产物,未来将发挥有着强大的功能。大数据的运用让一切变得更加透明,这也要求企业的营销策略要发生重大转变,要以我为中心变成以他人为中心,尤其是要以客户为中心,满足用户的友好体验。
尤其是在新兴的互联网金融领域,不少投资者因“风险控制”对P2P心存芥蒂,平台跑路、平台自融、自设基金池等诸多问问频频出现,引发了诸多思考,但从投资人角度来讲最关心的莫过于资金安全问题。从行业的发展来看,很多有第三方担保机构、小贷公司、即便是有银行托管的平台,都难以打消投资者的安全顾虑。其实,在DT时代,数据才是最有说服力的。不管是客户的营销,还是风控,如果能将大数据合理运用,都将事半功倍!
作为互联网金融行业的新秀,网利宝在细分领域里也做着像淘宝一样的事情。
淘宝给买家和卖家提供了一个交易的平台,而网利宝的本质也是一个信息中介,给借款端和融资端提供交易的场所。在网利宝,有借款需求的中小企业可以借钱,有投资需求的客户可以理财,双方自由交易。
目前,网利宝已经研发了自己的IT数据系统来防范风险。
网利宝CEO赵润龙说, IT数据系统的运用,对于网利宝的成本、效率、风控水平都有很大的提升。
以前,如果企业去银行贷款,银行需要先行派专人考察,调研,才能办理,但人是有成本的,不管是100万贷款,还是1个亿的贷款都要从头到尾摸个遍,以传统人的方式做风控对中小企业实际上物力成本、时间成本是非常高的,尤其是对于中小企业这种短期资金周转服务,银行是就不太愿意去做的。
IT数据系统强调贷前数据的积累,打造风险闭环。
因为网利宝专注于做企业信贷业务,当确定要和哪个行业合作后,首先会找到行业里龙头合作伙伴,一般是与大型企业或者上市公司绑定战略合作,通过该行业里的网络布局,实现IT数据系统的数据对接,这些数据往往是关于行业细分领域里中小企业的。其中,网利宝后台IT系统是收集核心数据的关键所在,可以通过模型分析,确定企业信用好坏,是否符合信贷标准。这样一来,网利宝在行业每个细分领域里涉及的风控模式基本上都是打造风控闭环。
此外,该数据系统在数据录入上没有容量限制,在数据的分析、使用上也更加智能、高效、便捷,也有效保障了网利宝即使交易达20亿,也无一例逾期或违约。DT时代,网利宝完全依赖数据对客户的信用程度作分析,将数据转化为信用,将信用转化为财富,克服了传统银行冗杂的审核程序、低效和高成本等难题。
如今,互联网金融正用互联网的技术、互联网的思想影响、完善,甚至改变着传统行业。网利宝业内独创“产融结合”模式,以产业为切入点,深耕行业细分领域,用互联网金融的方式为产业链中下游一些有借贷需求的中小企业提供融资支持,已经涉足汽车、红木、物流、珠宝、光电等十个传统行业,并在以互联网思维带动这些行业的转型。作为一个在线理财服务平台,网利宝打破传统理财的限制和模式,以专业、高效、贴心的金融服务为近30万的客户带去了极致的投资体验和私人理财的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21