
企业IT规划:大数据分析离不开认知计算
网络专家Mike Jude表示,大数据分析离不开认知计算,所以构建认知计算框架时不能掉以轻心。
人们越来越关注大数据在企业内部的应用,但却很少关注这些大型数据应用程序一旦建立后是如何被有效利用的。大多数情况下,企业都会给架构师提供一个允许数据专家查询这些数据存储情况的分析环境。换句话说,我们并没有民主化这些数据,也没有让它们做各个层面的决策,而是我们创建了一个新的IT象牙塔:一个由身穿白色实验服的人来帮我们做相应的查询工作。
当然,在大的数据应用环境下可以使用分析软件应用程序来完成一般的查询工作。但是,很多重要的企业业务和网络相关的决策不能交给那些通过几个简单的问题来选择的分析设备。相反,我们需要的是一个分析和大数据工具,这个工具能够把所有可用数据应用到特殊问题上,还可以利用那些模糊数据。这就是认知计算:使用智能设备从大量数据集中得出结论。
“沃森”的价值
IBM公司研究认知计算在大数据分析上的应用已经有一段时间了。早在2011年,IBM就在美国智力竞赛节目Jeopardy中展示了其“沃森”认知计算技术。在那个游戏中,“沃森”属于专家级别,击败了两个人类选手。那么“沃森”是如何赢的呢?其实是通过分析用来支持该游戏而创建的大规模数据库中的问答实现的。
从那时开始,IBM进一步开发“沃森”技术,并将其应用于需要在复杂的数据集中快速找到答案的基于云的应用中。它支持前端自然语言,也可以用来分析大型数据集合中的关系。特别要提到的是Watson Explorer和Watson Analytics应用,它们允许决策者从字面上考虑在特定领域中的可用数据来确认他们的决策。“沃森”不是通过分析无用数据,而是通过利用企业中所有的大数据应用资产来保证分析的准确性。
最近有一篇关于“沃森”的新闻,IBM展示了其利用所有可用数据来解决问题的价值。在此新闻事件中,IBM展示了“沃森”是如何通过匹配癌症患者的遗传信息来改善患者治疗方案的能力。由于医学研究的工作量是成倍增长的,而且非常复杂,如果由医生来做几乎是不可能完成的任务。但是“沃森”可以,它可以从数据库中快速匹配,找出精准的治疗方案,并向主治医生提供可行建议,甚至当医生选择了治疗方案后记录相关治疗方法,向主治医生学习经验。以后会越来越快速精准的。
有一种方法可以证明认知计算的价值
IBM通过一个提供免费访问的在线门户网站将其Watson Analytics提供给开发人员和企业IT人员,以研究其功能。在实际应用中,IBM通过订阅方式向企业和IT部门销售其“沃森”云环境。另外,IBM刚刚宣布了一个新的企业级混合云产品,希望能够保持其内部部署的计算环境。
当然,“沃森”并不是分析和大数据认知计算的唯一方法。如今有很多人工智能初创企业在研究这一领域。比如SmartAction,它是一个人工智能交互式语音应答的开发工具,利用IVA平台来处理客户呼叫中心的工作。另外,Cognitive Systems Institute也是在这一领域用来跟踪事态发展的很好的资源。
但是,“沃森”和它们并不一样,因为它是第一个设计用于一般用途的市场成熟的认知设备。有了开放的API,它显然是用于创建一个生态认知系统,这将最终推动一个新的理论计算趋势。
企业IT专业人员需要逐渐熟悉认知计算技术、先进的分析技术和人工智能技术。根据Frost & Sullivan Stratecast的一位分析师预测,数据很快会呈指数增长,到2020年,企业将有超过20 zetabytes(20万亿千兆字节)的数据。这种庞大数量的数据存储工作都将变得非常有挑战性,使用像spreadsheets这种工具来分析数据更是变得不可能。所以需要更高级的工具。
但是,实施认知计算并不简单。在没有外界帮助下开发基础设施来支持认知计算不是一般的IT部门可以做的。“沃森”也是通过前期大量的专业服务来确定用于支持和微调该方法的用例。这个企业案例依赖于业务指标作为这一过程的一部分,因此,一旦实施了应用程序,就可以确定投资回报率(ROI)。对于任何技术的实施,业务指标都必不可少:这很难衡量一个新技术的影响,除非你知道它和谁比较。
这里有一个问题是,是否所有的前期努力都有回报。Stratecast认为,在每个垂直行业里,了解认知计算的公司的业务都具有无可比拟的竞争优势。认知计算是转型:它将重新定义竞争格局。它是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04