
大数据+驱动产业革新为颠覆IT格局
“大数据+”和“互联网+”已然成为现代社会中传统产业改变的一种趋势,IT格局也将随着大数据的革新而取得颠覆传统的效果。全新产业变革即将迎来急迫挑战。大数据与分析技术的深入应用也将最大程度的改变传统产业的发展趋势。
2015第五届大数据世界论坛将于7月30-31日在北京召开,年度主题确定为“大数据:数据驱动产业变革”,将全面覆盖金融、电信、医疗、政府、电商与互联网、能源和公共事业、媒体与营销、零售、交通、物流等对大数据与分析技术与解决方案有巨大需求的重点行业与企业,与产业链各环节的专业人士共同交流大数据领域前沿技术与发展趋势,探讨如何有效选择大数据与分析技术与解决方案,规划大数据战略,以促进业务升级,发掘商业价值,驱动产业变革。
伴随着大数据概念在中国的萌芽,首届大数据世界论坛于2011年在北京成功举办,成为中国及亚洲地区最早创办的专业大数据论坛。随后,在中国大数据技术和市场蓬勃发展的大背景下,大数据世界论坛也得以发展成为业内最专业、最权威、规模最大的大数据年度盛会,也是是大数据业内人士每年“必须参加”的重要会议。对于行业和企业高层主管、信息主管及技术同行而言,论坛是进行信息收集、技术筛选和方案选型的重要渠道;而对于大数据相关技术、产品及解决方案提供商而言,论坛也是进行产品展示、市场推广、商机拓展的首选平台。在保持往届一贯的高水准下,2015第五届大数据世界论坛(BDWF 2015)锐意创新,全方位服务大数据技术与产业产业链,构建大数据健康生态系统,悉心打造三大亮点:
亮点一:大数据产业。2015年,大数据的发展已进入深度发展期,大数据技术与产业的结合度也越来越紧密,重点行业对大数据技术与方案的需求也越来越强烈。2015第五届大数据世界论坛(BDWF 2015)将特设“金融业大数据峰会”、“电信业大数据峰会”、“医疗业大数据峰会”、“政企大数据峰会”等多个针对行业应用的专场,推动大数据技术与产业的融合与创新,助力大数据驱动产业变革。
亮点二:大数据技术。技术创新是大数据发展的原动力,随着新技术的不断涌现,新的一年大数据技术格局将发生巨变。2015第五届大数据世界论坛(BDWF 2015)全面聚焦“大数据”、“快数据”与“智能数据”,特设“Hadoop亚太峰会”、“Spark亚太峰会”等技术专场,同时聚焦可视化、机器学习、内存计算、人工智能、一体机、闪存与实时分析等技术热点,打造年度大数据技术盛宴。
亮点三:大数据商业。随着越来越多的企业选择大数据分析技术与解决方案,大数据的商业价值越来越得以凸显。2015第五届大数据世界论坛(BDWF 2015)关注大数据推动企业业务的重塑与升级,通过来自第一线的企业案例实践与业界共同交流大数据在推动企业业务发展过程中的实战经验,推动更多的企业有效采用大数据技术驱动业务创新,实现商业价值。
现如今,如何有效的管理数据,提供方案这些与企业未来息息相关的关键问题已经不单单是只是IT技术问题,大数据时代的到来已经正在颠覆现有格局。让我们一同拥抱大数据带来的机遇和挑战吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15