
大数据能为我们的物流运输车队管理做什么
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的特点可以概括为4V,即Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据正在影响社会,改变企业的未来,从中能获得更多的收益。
而随着车联网\物联网的发展,车辆电子化程度越来越高,加上GPS软硬件的配载,使得车辆时时刻刻都在上传各种各样的数据,也逐渐形成了车辆大数据。车辆大数据不仅仅是单纯的车辆燃油、维修、位置等信息,还包含车辆相关的上下游供应商数据、车辆运营数据、交通数据、事故数据等等。
双语:且看DHL物流集团如何有效管理大数据
全球著名的邮递和物流集团DHL,用大数据Resilience360方案管理物流和供应链风险
物流两点之间哪条路线最短?看UPS如何用大数据优化送货路线
大数据正新酝造一个支柱产业——物流
数据管理的核心在于预测。车辆在运行时,会时刻自动上传大量数据,相比于互联网中很多人为不可控因素产生的数据而言,更具完整性和精确性,因此,车辆大数据在预测方面的作用尤为重要。如,预测交通堵塞的地段、实时交通信息、主动安全驾驶预测、车辆线路规划、驾驶者驾驶行为分析等。在大数据时代,分析交通流量,已经不去在乎导致交通堵塞的原因,而重视相关性,给出某个时段某个路段会发生拥堵的预测,根据预测结果,可以制定更好的运行线路,提升运力和效率。
燃油数据
谈到车辆管理,首先会想到一个老大难的问题,就是燃油管理,燃油数据也是车队数据中较重要的数据基础。燃油数据的准确性一直是困扰车辆管理的大难题,原因很多,比如燃油成本占比较大,且成本一直高居不下;跑冒滴漏现象难以管理等。因此管理好燃油对于车辆成本的降低有很重要的作用,通过燃油数据可以有效的、客观的反映燃油耗损问题,燃油数据的对比可以为燃油管理提供客观的管理依据。燃油数据采集一般有三大来源:
1.人工录入:通过考核登记燃油使用情况得到的数据;
2.燃油供应商后台数据:每次加油数据都会自动记录到各大供应商系统后台;
3.燃油监控设备记录:技术手段得到的燃油实时使用数据。
三大数据之间可以相互监控燃油使用情况,有效的防止燃油被盗。使用加油卡、定点加油和专人加油制度,可以减少加油时燃油被盗的风险;时间对比可以知道加油数据是否虚假;GPS里程数,可以作为码表里程的参考依据;燃油曲线可以有效直观的了解到燃油使用情况,可以快速了解有异常的燃油耗损车辆。
单车燃油的月对比可以了解本车燃油使用情况,同类型车辆的月对比、年对比可以了解同类车辆燃油使用情况,不同品牌的燃油对比,还可以为车辆采购提供参考。其中车辆监控系统的燃油曲线,还可以直观的反映基本的然油使用情况,减少查看时间,提高监控效率。
维修数据
燃油数据是常谈的话题,而维修数据常却常被遗漏,维修费用也是车辆费用的关键成本之一。但目前物流企业的维修数据还停留在人工录入阶段,4S店记录的维修数据只用于自身产品的改进和提升,有些维修厂甚至还停留在原始的维修车间水平,使得维修数据中心难以形成和共享。维修厂家/4S店缺少系统的数据库建设,且和用户之间也没有进行有效的数据共享,用户需要花费大量时间统计数据,而且由于数据样本数不够,又无法得到有效的分析结果用于管理。
车辆的维修成本、燃油耗损等受影响的因素很多,车型、品牌、年限、路况等。而如果我们能有足够的样本分析不同车型、不同年限、不同品牌等的车辆在不同路况、各种负重、使用时间长短等情况上的维修数据对比,那么就可以在企业车辆采购上给予足够的选择参考,也可以在企业报废车辆时提供数据参考。
而随着车辆电子化程度越来越高,传感器大量被应用于新一代车辆上,我们想实时了解发动机各部件的运行情况成为可能。我们可以了解轮胎胎压、机油和燃油使用情况、变速器和发动机运行是否正常等等各种信息,通过故障反馈信息可以快速定位和解决这些故障,减少维修时间,可以提醒需要保养和维修的部件,及时保养和维修,通过预警提醒减少事故的发生。
比如,当车辆行驶过程中,可以直接使用感应器对轮胎进行监测,也可以通过转速来监测胎压(当轮胎气压降低,由于车辆重量原因会使轮胎的滚动半径变小,导致转速比其他车辆快来监测轮胎气压),实时的监测,可以对轮胎漏气、低气压进行报警,并实时提醒司机和后台人员,确保安全行驶。车辆状态和故障信息传输到终端并共享给相关人员,从生产到使用各车辆供应链环节的人员可以从数据中得到各自所需的信息,以提高和改善产品或工作。如对用户而言,可以提高安全、提升效率;对于车辆企业可以得到反馈数据,更好的更新、提升产品性能;对于维修企业,可以有效的提供维修服务,提升企业竞争力。
单纯统计单车总维修费,是粗线条管理,得出的数据基本无法用于分析。细分管理到每个部位的数据分析,可以更清晰的了解车辆维修和车况的详细信息。比如同类车辆哪些部位是容易出问题的;将同一部位多车的维修费用进行对比,可以预防维修费用造假,也可以作为维修费用参考;维修里程数可以计算各部件的寿命信息等。
通过建立配件库或车辆管理系统的维修库,可以快速查询配件更换或维修价格,可以快速查找同类故障原因。
详细的维修数据,减少对专业人才的过分依赖,标准化的数据分析和使用流程,可以为车辆的采购、报废提供依据。若通过数据发现车辆的关键部位无法达到使用要求的车辆,或维修投入和产出率不高,就应该被淘汰更换新车。如果只统计总维修费,那么统计后的维修费用高,指的是哪些部位维修费用高?这种统计很容易造成被误判成车辆维修费过高而被淘汰。也可能关键部位已经严重受损,但统计后发现均维修费是较低的,而未报废却影响产出率,这些都将造成管理层决策失误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18