微信数据分析和微信传播模型
微信数据分析是什么
试想一下,如果是你,会怎么向你的领导、向你的下属,进行数据分析呢?是像描述天气一样“昨天阴天,今天天气挺好,风和日丽的,明天预报多云”,还是用其他的方式?大多数人所为的数据分析就像刚才描述天气一样,那不是分析,而是描述数据。
数 据分析需要从来源、行为、流失等方面进行分析。微信数据分析要根据微信传播的特性而定,微信传播是基于好友分享内容而产生的,这里不考虑单纯的复制粘贴, 那样的传播指向性不明确,这里我们只讨论指向性明确的分享链接和内容。微信数据分析需要从用户入手,新增、活跃、留存代表着数据分析的三个方面,进行开源 节流。
数据分析的作用,能够帮助我们回顾过去,评估现在,计划明天,预测未来,从而能够展望未来。数据分析还能够帮助我们认清现状,通过计划明天,逐渐向我们预想的未来靠近。
微信数据分析的内容(举栗子而已)
1、 新增用户数,主要包括:男、女、未知来源、员工推广、活动推广、用户传播、老用户传播、新用户传播、未知来源占比、员工推广占比、活动推广占比、用户传播 占比、老用户传播占比、新用户传播占比、分享员工、分享用户、分享老用户、分享新用户、分享员工占比、分享新用户占比、分享员工人均传播、分享用户人均传 播、分享老用户人均传播、分享新用户人均传播等。
2、好友关系数,主要包括好友数:0、1、2-5、6-10、10-20、20+以及占比情况等。
3、好友关系来源,主要包括:第一关系链ID、第一关系链昵称、关系类型和来源类型等。
4、微信/微信社区行为:如果是游戏,主要有注册(授权登录)、打开、完成、未完成、分享等;如果是电商,主要有注册(授权登录)、打开、下单、付费、删除订单等;如果是普通社区页面,主要有注册、打开、浏览、分享等。
5、交叉分析:留存用户数、新增用户数、留存人均、新增人均,次日用户留存率、7日留存、14天留存、30天留存;用户活跃度,行为完成、未完成用户数以及比例;活跃用户数,行为完成情况分类分析、完成率分析、完成率高低用户分析等。
6、交叉分析形式:图、表、图表。
7、通过交叉分析看产品运营数据的前生今世,了解昨天、评估今天,为前景而计划明天的具体实施。
微信传播模型
1、循环模型
模型来源,巧贝科技CEO Hata
2、循环公式(来源,巧贝科技CEO Hata)
NU – New Users(新用户数)
AU – Active Users(活跃用户数)
R% – Retention Rates(留存率)
S% – Share Rates(分享率)
F – Friends(好友数)
C% – Conversion Rates(转化率)
AU 01 = NU X0 × R N1%
NU 01 = AU 01 × S N1% × F × C N1%
= NU 00 × R N1% × S N1% × F × C N1%
= NU X0 × K N1%
NU X1 = NU X0 × K N1%
…………(抱歉中间部分省略下,嘿嘿)
NU X4 ≈ NU X0 × K N1%4
NU n ≈ NU 0 × K %n
3、根据模型改进产品和运营
R% 21%
S% 20%
F 100
C% 25%
几种可能的数值
R% 20% R% 25% R% 30%
S% 20% S% 25% S% 25%
F(常量) 100 F(常量) 100 F(常量) 100
C% 25% C% 16% C% 14%
1 1 1.0125
R% 30% R% 35% R% 35%
S% 30% S% 30% S% 35%
F(常量) 100 F(常量) 100 F(常量) 100
C% 12% C% 10% C% 9%
1.08 1.05 1.1025
R% 21%
S% 20%
F(常量) 100
C% 25%
1.05
理想中的是黄色部分中的两个,R%、S%、C%在这个基础上持续的增长,才能够给传播带来积极地效果和回报。产品和运营需要基于这三个点作调整,不断的优化、改进,甚至是颠覆式的创新。
如何提高R,留存率?
如何提高S,分享率?
又如何提高C,转化率?
当然,这个模型还有不完善的地方,首先,不适用与电商以及其他社会化媒体,目前只考虑了针对微信的传播模型,其他类型根据平台上用户行为以及传播的特性,会有一定的不同。其次,这个模型还需要大量的实例来证明和说明,提出不能指导实际工作的模型都是耍流氓。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03