京公网安备 11010802034615号
经营许可证编号:京B2-20210330
微信数据分析和微信传播模型
微信数据分析是什么
试想一下,如果是你,会怎么向你的领导、向你的下属,进行数据分析呢?是像描述天气一样“昨天阴天,今天天气挺好,风和日丽的,明天预报多云”,还是用其他的方式?大多数人所为的数据分析就像刚才描述天气一样,那不是分析,而是描述数据。
数 据分析需要从来源、行为、流失等方面进行分析。微信数据分析要根据微信传播的特性而定,微信传播是基于好友分享内容而产生的,这里不考虑单纯的复制粘贴, 那样的传播指向性不明确,这里我们只讨论指向性明确的分享链接和内容。微信数据分析需要从用户入手,新增、活跃、留存代表着数据分析的三个方面,进行开源 节流。
数据分析的作用,能够帮助我们回顾过去,评估现在,计划明天,预测未来,从而能够展望未来。数据分析还能够帮助我们认清现状,通过计划明天,逐渐向我们预想的未来靠近。
微信数据分析的内容(举栗子而已)
1、 新增用户数,主要包括:男、女、未知来源、员工推广、活动推广、用户传播、老用户传播、新用户传播、未知来源占比、员工推广占比、活动推广占比、用户传播 占比、老用户传播占比、新用户传播占比、分享员工、分享用户、分享老用户、分享新用户、分享员工占比、分享新用户占比、分享员工人均传播、分享用户人均传 播、分享老用户人均传播、分享新用户人均传播等。
2、好友关系数,主要包括好友数:0、1、2-5、6-10、10-20、20+以及占比情况等。
3、好友关系来源,主要包括:第一关系链ID、第一关系链昵称、关系类型和来源类型等。
4、微信/微信社区行为:如果是游戏,主要有注册(授权登录)、打开、完成、未完成、分享等;如果是电商,主要有注册(授权登录)、打开、下单、付费、删除订单等;如果是普通社区页面,主要有注册、打开、浏览、分享等。
5、交叉分析:留存用户数、新增用户数、留存人均、新增人均,次日用户留存率、7日留存、14天留存、30天留存;用户活跃度,行为完成、未完成用户数以及比例;活跃用户数,行为完成情况分类分析、完成率分析、完成率高低用户分析等。
6、交叉分析形式:图、表、图表。
7、通过交叉分析看产品运营数据的前生今世,了解昨天、评估今天,为前景而计划明天的具体实施。
微信传播模型
1、循环模型
模型来源,巧贝科技CEO Hata
2、循环公式(来源,巧贝科技CEO Hata)
NU – New Users(新用户数)
AU – Active Users(活跃用户数)
R% – Retention Rates(留存率)
S% – Share Rates(分享率)
F – Friends(好友数)
C% – Conversion Rates(转化率)
AU 01 = NU X0 × R N1%
NU 01 = AU 01 × S N1% × F × C N1%
= NU 00 × R N1% × S N1% × F × C N1%
= NU X0 × K N1%
NU X1 = NU X0 × K N1%
…………(抱歉中间部分省略下,嘿嘿)
NU X4 ≈ NU X0 × K N1%4
NU n ≈ NU 0 × K %n
3、根据模型改进产品和运营
R% 21%
S% 20%
F 100
C% 25%
几种可能的数值
R% 20% R% 25% R% 30%
S% 20% S% 25% S% 25%
F(常量) 100 F(常量) 100 F(常量) 100
C% 25% C% 16% C% 14%
1 1 1.0125
R% 30% R% 35% R% 35%
S% 30% S% 30% S% 35%
F(常量) 100 F(常量) 100 F(常量) 100
C% 12% C% 10% C% 9%
1.08 1.05 1.1025
R% 21%
S% 20%
F(常量) 100
C% 25%
1.05
理想中的是黄色部分中的两个,R%、S%、C%在这个基础上持续的增长,才能够给传播带来积极地效果和回报。产品和运营需要基于这三个点作调整,不断的优化、改进,甚至是颠覆式的创新。
如何提高R,留存率?
如何提高S,分享率?
又如何提高C,转化率?
当然,这个模型还有不完善的地方,首先,不适用与电商以及其他社会化媒体,目前只考虑了针对微信的传播模型,其他类型根据平台上用户行为以及传播的特性,会有一定的不同。其次,这个模型还需要大量的实例来证明和说明,提出不能指导实际工作的模型都是耍流氓。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20