京公网安备 11010802034615号
经营许可证编号:京B2-20210330
二、大数据面面观
当前,大数据正处于快速发展期,每个人对于大数据都有不同的认识,那么什么是大数据?其基本特征又是什么呢?这就需要我们从多个维度来理解和认识大数据。
(一)何谓大数据
所谓大数据,是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。认真分析大数据,其本质体现在如下五个方面:第一,数据量大。相对于传统的抽样调查的数据,大数据无疑是巨大的,尤其是依靠传统的计算手段难以有效计算的。第二,服务于决策。大数据的主要目的是服务于各类决策,能够帮助各类组织和个人大幅度提升决策能力。第三,需要新处理模式。由于大数据数量大且非结构化数据很多,现有的处理模式不能有效处理大数据,需要新处理模式。第四,信息资本。大数据是一种信息资本,而不仅仅是一堆数据和成本。所谓信息资本,是指其能够为政府和企业带来未来经济利益的信息资源,更是和土地、资本、人才等一样的新生产要素。第五,更为复杂。大数据比海量数据更为复杂,海量数据包括结构化和半结构化的交易数据,而大数据除此之外还包括非结构化数据和交互数据。
(二)大数据的特点
大数据在量度、频度、速度、维度和温度五个方面具有显著的特点,具体如下:
第一,在量度方面,具有海量性特点,即大数据规模巨大,当前通常指10TB规模以上的数据量,而且随着数据的迅猛增加,大数据的量级还会进一步增加。
第二,在频度方面,具有高频率的特点,即发生的频率很高,重点在于用户参与与互动而产生的数据。在这方面,传统媒体的发行用户数据的价值就很小,关键在于其发行用户非在线,基本上一年才更新一次。
第三,在速度方面,具有实时性的特点,即大数据能够实时反应。例如,在Google搜索框内输入一个关键词,就能够瞬间呈现与其相关的信息,一旦其反应速度稍有不及,就会有大量的用户流失。
第四,在维度方面,具有全样本、多维度、非结构化的特点,即大数据是全体样本的数据,而不是抽样的数据;大数据是多个维度的数据,而不是单个维度的数据;大数据既有惯常的结构化的数据,也有音频、视频等非结构化的数据,而不仅仅是结构化数据。
第五,在温度方面,具有在线性特点,即大数据是永远在线的,能够随时被调用的,这就要求必须基于用户数量巨大的互联网平台。这些平台记录了用户的行为、情感、思想、爱好与需求,能够科学地分析用户的需求。
此外,可以按照生产的主体不同,把大数据分为商务过程数据(由传统的信息系统产生)、环境状态数据(由传感器产生)、社会行为数据(由社交媒体产生)、物理实体数据(由数字化制造产生)四种类型。当然也可以按照归属主体分为政府数据和企业数据,其中政府数据又分为民意数据、业务数据和环境数据。
(三)大数据蕴含着新思想和新思维
在大数据出现之前的小数据时代,我们只能通过抽样调查的方式来回答“为什么”,即找出“因果关系”,找出事情的前因后果。即使有相关关系的研究,重点也是研究“因果关系”。
在大数据时代,大数据大大拓宽了研究范围,大数据能通过全样本的方式来回答“是什么”,即发现相关关系,这能够帮助我们更好地认识和了解世界。因此,大数据既能处理“因果关系”,又能处理“相关关系”,即不仅能够回答“为什么”,又能够回答“是什么”。
典型的相关关系而非因果关系的案例主要有:沃尔玛啤酒与尿布的混搭;鲨鱼对人类的攻击次数和冰淇淋的销量是正相关的;儿童的蛀牙数量与他们的词汇量是正相关的;在美国,自2004年以来,“体重增加”与“房屋出租”的相关性达到90%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20