京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谁才是大数据时代真正的赢家_数据分析师
我的一个老板跟我讲了一个道理。他在谷歌还很小的时候加入的。为什么?他说,1930年的时候,挣了钱的人都买银行股票,股票跌得很惨。后来经济危机以后,你为什么还敢买银行股票?他说很简单,因为世界上的钱都在他们那里面。
美国互联网泡沫的时候,他在2001年加入谷歌。他说很简单,因为数据都在他那里。
所以说,将来拥有大量数据的公司是最大受益者!这些公司不只是我们知道的,谷歌和脸谱,还有很多很多。我举一个例子,一个中国的上市公司叫京风,做风能发电的,现在全球市场份额第二,他有很多发电站,每个发电机上都安有传感器,传感器将所有数据搜集起来,就能够优化他的运营,使他整体效益增加。
大数据加云计算,至少在美国一个产业的变革,每年差不多在全世界上万亿的规模,因为现在把所有的新的东西重新做一遍,整个将来服务是上万亿,这将带来最大的好处。
所以,有数据的企业会得益。所谓有数据不是天然具备了很多数据,你即使是传统行业,能够采集到多少数据决定了你受益有多大。
大数据来了统计学将死
更重要的是,大数据在某种程度上颠覆了统计学的做法。我讲一个故事,罗斯福竞选总统事件,一家公司采用抽样统计的方法,打电话问谁能当总统,做了几十万份问卷,得出结论是罗斯福要输了。但是,最后罗斯福赢了。
当时有一个小伙子,他说我预测罗斯福赢。我只需用三千个人的信息,因为我知道美国的人口收入的分配,男女的分配,各个年龄的分配,我采样了三千份数据推算出罗斯福会赢。这个人就是乔治·盖洛普,也因此一夜成名。(乔治·盖洛普是美国数学家,抽样调查方法的创始人、民意调查的组织者,他几乎是民意调查活动的代名词。)很多人研究统计学的采样,大数据来了告诉我们,不通过直接的数据采集方式,而是通过各种间接的形式,复员各种信息,准确性要比直接数据来源要准确得多!
大数据时代下的择业,创业和转型
现在是移动互联网时代,如果办公司,直接在手机、Pad上办。我们过去分科技企业,传统企业,但以后界限会越来越不明显。我举一个例子,万达广场。阿里巴巴的一个高管给他们做了一个系统,帮他们把很多零售东西搬到网上去了,增加5%的客流量和8%的利润。稍微改造了一下就由传统行业跨入互联网了。我想五年以后,可能某种程度上来讲,互联网将进入所有行业。
此外,我在投资方面有两种观点和看法。一种是建一个恐龙一样的公司。恐龙是架子搭得很大很好,什么东西来了我都不怕。另一种是建一个变色龙一样的公司,互联网的公司很多是变色龙,我开始想做A件事,最后变成B。
在60年代的时候,美国最大的公司,也是全球最大的公司是通用汽车公司,他们大概在美国雇了60万人,在全球大概雇了100万人,都是传统阶级。到了2012年有一家公司创造人类历史上整个股市的峰值,就是苹果公司,到6000亿美元。但是在那个时代,苹果在全球只雇了6万人,美国只雇了4万人,大概相当于通用汽车在60年代雇的人数的1/15,也就是说他的财富更多了。
Google推出了自动驾驶,司机就失业了。苹果只雇用了4万人就创造了人类历史上整个股市的峰值,相当于以前美国最大公司通用汽车在60年代雇的人数的1/15。那么剩下的56万人怎么办?未来医生律师都要被消化掉,这非常棘手。
所以,我个人觉得大数据时代会带来一个问题:我们一辈子可能需要不只一个职业或者一次创业。一是我们生命太长,行业持续的时间未必比我们活的长。二是因为技术变得太快,我们也要跟着变。总体来讲,学习是一辈子的事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01