
谁才是大数据时代真正的赢家_数据分析师
我的一个老板跟我讲了一个道理。他在谷歌还很小的时候加入的。为什么?他说,1930年的时候,挣了钱的人都买银行股票,股票跌得很惨。后来经济危机以后,你为什么还敢买银行股票?他说很简单,因为世界上的钱都在他们那里面。
美国互联网泡沫的时候,他在2001年加入谷歌。他说很简单,因为数据都在他那里。
所以说,将来拥有大量数据的公司是最大受益者!这些公司不只是我们知道的,谷歌和脸谱,还有很多很多。我举一个例子,一个中国的上市公司叫京风,做风能发电的,现在全球市场份额第二,他有很多发电站,每个发电机上都安有传感器,传感器将所有数据搜集起来,就能够优化他的运营,使他整体效益增加。
大数据加云计算,至少在美国一个产业的变革,每年差不多在全世界上万亿的规模,因为现在把所有的新的东西重新做一遍,整个将来服务是上万亿,这将带来最大的好处。
所以,有数据的企业会得益。所谓有数据不是天然具备了很多数据,你即使是传统行业,能够采集到多少数据决定了你受益有多大。
大数据来了统计学将死
更重要的是,大数据在某种程度上颠覆了统计学的做法。我讲一个故事,罗斯福竞选总统事件,一家公司采用抽样统计的方法,打电话问谁能当总统,做了几十万份问卷,得出结论是罗斯福要输了。但是,最后罗斯福赢了。
当时有一个小伙子,他说我预测罗斯福赢。我只需用三千个人的信息,因为我知道美国的人口收入的分配,男女的分配,各个年龄的分配,我采样了三千份数据推算出罗斯福会赢。这个人就是乔治·盖洛普,也因此一夜成名。(乔治·盖洛普是美国数学家,抽样调查方法的创始人、民意调查的组织者,他几乎是民意调查活动的代名词。)很多人研究统计学的采样,大数据来了告诉我们,不通过直接的数据采集方式,而是通过各种间接的形式,复员各种信息,准确性要比直接数据来源要准确得多!
大数据时代下的择业,创业和转型
现在是移动互联网时代,如果办公司,直接在手机、Pad上办。我们过去分科技企业,传统企业,但以后界限会越来越不明显。我举一个例子,万达广场。阿里巴巴的一个高管给他们做了一个系统,帮他们把很多零售东西搬到网上去了,增加5%的客流量和8%的利润。稍微改造了一下就由传统行业跨入互联网了。我想五年以后,可能某种程度上来讲,互联网将进入所有行业。
此外,我在投资方面有两种观点和看法。一种是建一个恐龙一样的公司。恐龙是架子搭得很大很好,什么东西来了我都不怕。另一种是建一个变色龙一样的公司,互联网的公司很多是变色龙,我开始想做A件事,最后变成B。
在60年代的时候,美国最大的公司,也是全球最大的公司是通用汽车公司,他们大概在美国雇了60万人,在全球大概雇了100万人,都是传统阶级。到了2012年有一家公司创造人类历史上整个股市的峰值,就是苹果公司,到6000亿美元。但是在那个时代,苹果在全球只雇了6万人,美国只雇了4万人,大概相当于通用汽车在60年代雇的人数的1/15,也就是说他的财富更多了。
Google推出了自动驾驶,司机就失业了。苹果只雇用了4万人就创造了人类历史上整个股市的峰值,相当于以前美国最大公司通用汽车在60年代雇的人数的1/15。那么剩下的56万人怎么办?未来医生律师都要被消化掉,这非常棘手。
所以,我个人觉得大数据时代会带来一个问题:我们一辈子可能需要不只一个职业或者一次创业。一是我们生命太长,行业持续的时间未必比我们活的长。二是因为技术变得太快,我们也要跟着变。总体来讲,学习是一辈子的事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04