
大数据时代舆情服务的机遇与挑战分析
舆情服务在进行行业规范和整合的同时,正面临着大数据挑战。本文从信息浓缩、数据深挖、关联舆情构建与跟踪、大舆情等层面,深入分析并提出大数据时代舆情服务的应对建议。
浓缩海量信息抵抗“数据爆炸”
“信息超载”“数据爆炸”将人们变为机械的信息查询者。在过剩的信息海洋里,阅读由享受变为负担。美国、日本近年来的信息吸收率仅为10%左右。曾经公务繁忙的美国前总统克林顿说,就理解和领会能力而言,头脑中塞满东西和头脑中空空如也同样糟糕。也因此,能够在短时间内消费最大信息量的“浅阅读”成了大数据时代最大的阅读变革。从舆情产品服务的角度看,浓缩海量信息,抵抗“数据爆炸”已成基本要求。可从两方面着手:一方面在信息广度上作文章,最大可能去抓取数据信息。同时掌握数据抓取能力与舆情解读能力将是未来舆情分析的必备技能。另一方面,舆情分析人员需要对一些非常重要的事件,给予一种更加平易的解读方式。
强化数据深挖实现“信息增值”
提高舆情产品质量的关键,在于对数据的“加工能力”,通过“加工”实现数据的“增值”。这就要求分析人员提高对信息的鉴别力、萃取力、掌控力,对数据进行生产、分析和解读,探索一条为用户提供分众化服务的信息增值之路。
目前,已有美国大学专门开设了研究大数据技术的课程,培养下一代的“数据科学家”。在国内,情况更不容乐观,很多舆情服务机构甚至没有专门的数据管理、分析部门和专业分析团队。未来需要一批有较高学习能力、分析能力、知识水平的数据从业人员占据舆情服务重镇。
构建关联舆情消除“信息孤岛”
目前我国信息化应用水平参差不齐,政府和企业不同的部门之间都存在“信息孤岛”问题:有多少个部门就有多少个信息系统,每个系统都有自己的数据库、应用软件和用户界面,完全是独立的体系,阻碍了数据的互通互联。舆情机构提供的个案分析已不能满足政府和企业的资讯需求,协助对方消除“信息孤岛”越来越紧迫。
作为政府和企业的资讯提供者,舆情服务机构需把握未来几年大数据在公共及企业管理领域发展的重要方向,充分整合政府和企业的数据资产,进而完善对方的决策流程。通过搭建关联领域的数据库、舆情基础数据库等,在舆情预警、研判、应对、决策等环节,丰富和完善决策参考体系。届时,舆情和数据服务不再局限于个案分析,同时需要跟踪关联舆情,不再局限于危机解决,还要辅之以决策参考。
跟踪关联数据提高趋势研判
大数据的核心和目标就是预测。舆情等数据分析机构从互联网浩如烟海的数据中挖掘信息、判断趋势、提高效益已有实际应用。在美国中央情报局,情报人员通过抓取海量数据来追踪恐怖分子和监控社会情绪,首席技术官格斯?汉特称,在“阿拉伯之春”中,大数据分析可以了解多少人和哪些人正在从温和立场变得更为激进,并“算出”谁可能会采取对某些人有害的行动。
在大数据时代,决策行为将更多地基于数据、分析和事实做出。鉴于此,2012年3月29日美国政府发布的《大数据研究和发展计划》提出,应当通过对海量和复杂的数字资料进行收集、整理,从中获得真知灼见,以提升对社会经济发展的预测能力。具体到舆情服务,分析人员要不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,从注重“静态收集”向注重“动态跟踪”拓展,从致力“反映问题”向致力“解决问题”拓展,使舆情产品“更快”——预警快、决策快。
树立大舆情观念拓展服务边界
提起舆情监测,人们更多想到网络舆情,忽略了现实社会生活中的舆论情况。舆情服务与社会调查结合不足,甚至直接把网络观点整理后报送给客户,难免对决策产生误导。如几年前,对于假期增减的网络投票,有机构打着尊重民意的旗号,在网上和其他媒体做调查,而最后的结果却与很多民众真实意见相左,破坏了舆情服务的公信?力。
舆情服务机构应树立大舆情观念,使舆情服务的主体和边界“更全”。这里的大舆情,强调大数据的关联性,横向看,将服务主体延伸至政府、企业和社会的各领域;纵向看,将产品内容延伸至包括舆情预警到决策方案在内的各环节。
网络舆情分析、社会调查和效果研究相整合,不但拓展了舆情服务的边界,同时使舆情产品更科学、严谨,避免误判。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01