京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代舆情服务的机遇与挑战分析
舆情服务在进行行业规范和整合的同时,正面临着大数据挑战。本文从信息浓缩、数据深挖、关联舆情构建与跟踪、大舆情等层面,深入分析并提出大数据时代舆情服务的应对建议。
浓缩海量信息抵抗“数据爆炸”
“信息超载”“数据爆炸”将人们变为机械的信息查询者。在过剩的信息海洋里,阅读由享受变为负担。美国、日本近年来的信息吸收率仅为10%左右。曾经公务繁忙的美国前总统克林顿说,就理解和领会能力而言,头脑中塞满东西和头脑中空空如也同样糟糕。也因此,能够在短时间内消费最大信息量的“浅阅读”成了大数据时代最大的阅读变革。从舆情产品服务的角度看,浓缩海量信息,抵抗“数据爆炸”已成基本要求。可从两方面着手:一方面在信息广度上作文章,最大可能去抓取数据信息。同时掌握数据抓取能力与舆情解读能力将是未来舆情分析的必备技能。另一方面,舆情分析人员需要对一些非常重要的事件,给予一种更加平易的解读方式。
强化数据深挖实现“信息增值”
提高舆情产品质量的关键,在于对数据的“加工能力”,通过“加工”实现数据的“增值”。这就要求分析人员提高对信息的鉴别力、萃取力、掌控力,对数据进行生产、分析和解读,探索一条为用户提供分众化服务的信息增值之路。
目前,已有美国大学专门开设了研究大数据技术的课程,培养下一代的“数据科学家”。在国内,情况更不容乐观,很多舆情服务机构甚至没有专门的数据管理、分析部门和专业分析团队。未来需要一批有较高学习能力、分析能力、知识水平的数据从业人员占据舆情服务重镇。
构建关联舆情消除“信息孤岛”
目前我国信息化应用水平参差不齐,政府和企业不同的部门之间都存在“信息孤岛”问题:有多少个部门就有多少个信息系统,每个系统都有自己的数据库、应用软件和用户界面,完全是独立的体系,阻碍了数据的互通互联。舆情机构提供的个案分析已不能满足政府和企业的资讯需求,协助对方消除“信息孤岛”越来越紧迫。
作为政府和企业的资讯提供者,舆情服务机构需把握未来几年大数据在公共及企业管理领域发展的重要方向,充分整合政府和企业的数据资产,进而完善对方的决策流程。通过搭建关联领域的数据库、舆情基础数据库等,在舆情预警、研判、应对、决策等环节,丰富和完善决策参考体系。届时,舆情和数据服务不再局限于个案分析,同时需要跟踪关联舆情,不再局限于危机解决,还要辅之以决策参考。
跟踪关联数据提高趋势研判
大数据的核心和目标就是预测。舆情等数据分析机构从互联网浩如烟海的数据中挖掘信息、判断趋势、提高效益已有实际应用。在美国中央情报局,情报人员通过抓取海量数据来追踪恐怖分子和监控社会情绪,首席技术官格斯?汉特称,在“阿拉伯之春”中,大数据分析可以了解多少人和哪些人正在从温和立场变得更为激进,并“算出”谁可能会采取对某些人有害的行动。
在大数据时代,决策行为将更多地基于数据、分析和事实做出。鉴于此,2012年3月29日美国政府发布的《大数据研究和发展计划》提出,应当通过对海量和复杂的数字资料进行收集、整理,从中获得真知灼见,以提升对社会经济发展的预测能力。具体到舆情服务,分析人员要不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,从注重“静态收集”向注重“动态跟踪”拓展,从致力“反映问题”向致力“解决问题”拓展,使舆情产品“更快”——预警快、决策快。
树立大舆情观念拓展服务边界
提起舆情监测,人们更多想到网络舆情,忽略了现实社会生活中的舆论情况。舆情服务与社会调查结合不足,甚至直接把网络观点整理后报送给客户,难免对决策产生误导。如几年前,对于假期增减的网络投票,有机构打着尊重民意的旗号,在网上和其他媒体做调查,而最后的结果却与很多民众真实意见相左,破坏了舆情服务的公信?力。
舆情服务机构应树立大舆情观念,使舆情服务的主体和边界“更全”。这里的大舆情,强调大数据的关联性,横向看,将服务主体延伸至政府、企业和社会的各领域;纵向看,将产品内容延伸至包括舆情预警到决策方案在内的各环节。
网络舆情分析、社会调查和效果研究相整合,不但拓展了舆情服务的边界,同时使舆情产品更科学、严谨,避免误判。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22