
千禧一代和大数据正在推动“分享经济” _数据分析师
要搭便车吗?要预定房间吗?打开一款应用程序,上述问题瞬间搞定。
我对这种分享型经济的潜力以及数据使这种新模式得以应用于商业所发挥的作用感到兴奋。上周在纽约首席数字官峰会(CDO Summit)发表闭幕讲话的Crowd Companies公司创始人耶利米·欧阳(Jeremiah Owyang),准确地对参与分享型经济作出了评价,他指出,分享型经济在2013年和2014年之间增长将近一倍,而在今后,它只会继续增长。推动分享型经济的社会、经济和技术力量通通到位,人们正继续发现点对点对等交换商品和服务的优点,而来自传统企业的阻力正让步于对适应这种新常态的理解。在这些情况下,保持强劲增长似乎是不可避免的。
我想更深入地探究客户数据和大数据在这种不断增长的分享型经济中的适用之处,以及老牌企业对此作出的回应——但首先,让我们快速回顾本文中讨论的内容。用欧阳的话来说,分享型经济,就是“一种经济模式,在这种模式中,技术能帮助人们从彼此——而不是从集中化的机构获得各自需要的东西。”一些更明显的例子包括优步(Uber)和Airbnb。
数据产生的影响
在分享型经济中,它并非是分享新鲜事物这种理念;世世代代以来,人们一直都是这么做的。而现在有所不同的是,在这种理念中引入了技术——特别是易于使用的数字技术,比如基于位置的GPS系统,可以帮助人们迅速地发出对商品和服务的请求,并作出回应。数据是支持分享型经济的技术架构中的一个组成部分。参与者可以自由地分享其数据,让别人知道他们的需求,而大数据算法被应用于根据存在闲置产能的领域提出相关建议,从而满足需求。数据是产能计算、社交媒体整合和数字技术交互的基础,这三者加在一起使根据需要获取事物成为可能。
另外,数据也是初创公司能轻松加入分享型经济的关键所在。得益于可以迅速分析和预测需求的数据分析,以及根据需求扩大或缩小数据和应用的云计算服务,进入市场的成本和时间降至最低。数千家初创企业纷纷涌入这个领域并寻找支持它们事业的资金,这毫不奇怪。
曾经的威胁变成机遇
直到最近,大多数传统企业才不再将低资产、高估值和分享型经济的初创公司(比如优步和Airbnb)视为威胁——也许能够成为新贵的初创公司并没有那么多,这些初创公司向花了很长时间才建立起规模的老牌企业大举进犯。它们的第一反应是打击这些新来的公司:出租车公司努力要让优步和Lyft等服务不合法,酒店运营商对Airbnb也采取了同样的行动,这是两个具有代表性的例子。
正如《哈佛商业评论》(Harvard Business Review)所指出的,随着时间的推移,越来越明显的是,分享型经济将不会消失,而传统公司开始看到调整自身运营,以适应分享型经济模式所具有的种种优势——并意识到“这种分享型经济不仅仅适用于初创公司”。
传统企业通过多种形式涉足分享型经济。一些大型企业正在收购初创公司;比如,汽车租赁公司安飞士(Avis)收购了汽车共享公司Zipcar。其他的则与初创公司展开合作,比如,与百事公司(Pepsi)和沃尔格林(Walgreens)达成合作,按需外包任务的TaskRabbit。
我最喜欢的参与分享经济的主流企业例子之一就是宝马(BMW)。宝马在去年推出以其电动汽车为特色的DriveNow汽车共享服务。这项服务很像同类其他服务:需要用车一个小时或者一天的司机使用数字技术分享有关他们目前所在位置、想要的汽车类型和目的地等数据。一旦他们在附近找到一辆符合其要求的汽车,他们就可以把车子开走,等他们用完之后,再将车子送回原地或者放在另一个汽车共享地点。
这是有关数据如何帮助实现分享型经济的典型案例。它表明的另一点是,主流公司如何自我调整,从而适应新的形势。在这里,真正具有变革意义的是,汽车共享服务由某个行业——汽车制造和销售——的某家公司提供,该行业的业务将被汽车共享抢走。然而,宝马却接受了它,并将它视为一次机遇,而不是竞争或者抵制。借用耶利米·欧阳的话说,该公司正努力将同一辆汽车共享1000次,而不是试图销售1000辆宝马汽车。
这种新型商业模式的下一步将是什么?我们很难预测。十年前谁又曾想过,一群组织松散的人用额外的房间和床垫,最终打造成一家估值为200亿美元的公司?但无论分享经济的将来如何,我都迫不及待地想看到它的发展,并看看大数据在这种发展中发挥的影响力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04