京公网安备 11010802034615号
经营许可证编号:京B2-20210330
二手房交易“大数据”:北京人平均33年换一次房
如果不是将所有数据都摆在您面前,您对北京的二手房涨幅,可能还只是“感觉”。昨日,伟业我爱我家公布了他们攒了15年的北京二手房交易“大数据”,从中我们可以发现一些有意思的现象:从上世纪末北京出现二手房开始到现在,购房人多掏了10倍的钱买房;北京奥运会结束后,一线城市的新房和二手房市场突然出现了变化——二手房交易量超过了新房;2009年,北京二手房成交量攀上了近15年以来的最高峰,达到25万套。
二手房比重不断增大
很多新来的北京人可能对房价的感觉,还只是近几年的事儿。而我爱我家的数据显示,当年望京的部分房源每平方米只要3000元,买一套100平方米的房子,只需要二三十万元就能全拿下。
“我入行的时候,还没人把房地产经纪或者中介这个行业当一回事儿。”伟业我爱我家集团副总裁胡景晖说,1999年全市的二手房交易加起来,还没有目前我爱我家单月的交易量多。而1999年的数据由于太低,都无法在柱状图上显示。
连续15年的调查数据显示,2000年到2003年期间,大部分人买房子愿意出20万元到30万元;2004年时,就已经涨到40万元到60万元;2007年以后,购房人买房子愿意拿出的钱是100万元;2009年时就跳到了150万元;到现在,平均一单二手房的成交价,已经到了250万元到300万元之间。
“这是一个社会财富积累和交易标的物价格和中介承担的责任不断增加的过程。”胡景晖说。
奥运会结束后,一线城市的新房和二手房市场突然出现了变化——二手房交易量超过了新房,而这种情况不仅出现在北京,上海、广州、深圳也在同一年出现了这样的状态。
2009年,北京二手房成交量攀上了近15年以来的最高峰,达到25万套。同时,2009年成为新房和二手房交易比重的分水岭。
数据显示,自2009年北京二手房交易量首超新房开始迄今已领先7个年头,且量差越来越大,已达到1∶2.2。这也就意味着,市场上每成交2.2套二手房,才会成交一套新房。成交价、成交量二者呈现出滚雪球式的增长。
年交易量上升到15万套
据我爱我家市场研究中心统计,15年来北京二手房年交易量,已从最初的年均几千套跃升到现在的年均15万套左右,单价、总价也在2005至2007年、2009年两个特殊历史时段呈过山车式增长,当前主城区均价已达到36000元/平方米、300万/套左右的水平。通过经纪公司成交的二手房市场份额也从最初的不足20%到现在的80%,承载的交易量与交易金额预计超过3600亿。
但这个看似庞大的数据还传达出另外一个信号——北京每年交易的二手房占可交易的房子的比例,只有2到4个百分点。
“这意味着什么?平均我们算3%,意味着每个北京人33年才换一次房。”胡景晖解释说,因为每年市场上只有2%、3%的房子在流通,所有的房子流通一遍需要30年。
这样的结果,和一部分发达国家有着巨大差距。美国目前的二手房换手率平均8%左右,意味着一个美国家庭平均12年换一次房。
如果北京的二手房换手率达到8%,那又是怎样一番场景呢?“那一年就应该是60多万套的交易量,相当于现在的3到4倍。”胡景晖分析,由于目前的二胎政策和贷款、纳税政策走向宽松,对很多北京人来说,每10年换一次家,或许会变得“很正常”。
购房主力军年龄不断攀升
“跟你说吧,我这房子最主要的还是看学区;孩子从上幼儿园到高中只要都方便,这套房我现在就签了。”昨天中午,站在东直门内的一家中介门店里,30多岁的北京市民刘先生,将自己的购房要求全盘向中介业务员托出。
这是刘先生购买的第一套房子,此前的30多年,他一直蹭住在父母家,直到孩子出生才计划添置房产。按照我爱我家的大数据计算,10年前他如果买了房,将会出现在当时22岁以下的购房人群体中;而今,能够在22岁以下购房的人,变得寥寥无几了。
我爱我家的统计数据显示,2006年,还有一些22岁以下的购房人出现,而到了2015年,柱状图上几乎已经没了标志着22岁以下年轻人的蓝色。原本26岁到30岁的人是购房主力军,而随着房价的增高,这部分“主力军”力量被逐渐压缩,31岁到35岁的人群逐渐增加。
“现在的购房人都已经成长,购房人群已经迭换一代人。”胡景晖说,据我爱我家市场研究中心统计,2006年二手房购买人群中,70后、80后占比分别为52.4%、27.2%,经过十年的变迁,当前70后、80后占比分别为29.2%、54.4%。如今的二手房市场中,80后成为购房主体,相对的是,70后已经退出了主力购房人群。
“看到这张图我发现确实我老了。”胡景晖感叹。10年内,90后的购买者占比从原来的0.4%变成了4.1%,增长了10倍有余。而41岁到50岁以及50岁以上人群,在这10年中几乎没有变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26