
大数据时代的“弄潮与识潮”_数据分析师
“专业展会、国际平台、促进合作、共谋未来”——2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会于2015年5月26日至29日,将在贵阳国际会议展览中心举行以“大数据时代的变革、机遇和挑战”为主题的大型数博会,届时将举行展览展示、峰会论坛和创新大赛等活动,综合呈现大数据技术、应用和发展趋势。
绿水青山的确就是“金山银山”。贵阳气候凉爽,空气清新,符合精密制造业研究发展的要求和创新创业者的宜居选择;贵阳的地质构造稳定,地震、台风等灾害罕见,信息网络设备的“安全系数”很高,对大数据产业企业有很强吸引力。在这巨大的“绿色背景”之下,贵阳以首届数博会为契机,引领和推动向大数据时代的快速迈进,无疑显现了其珠联璧合、相得益彰的独特优势与璀灿前景。
当前眼下,“大数据时代”已非一个虚幻空洞的时髦名词,而早涌现了捷足先登的弄潮群雄。贵阳数博会,已不仅仅是一个寻常意义上的博览会:全球第一个“数博会”,马云、郭台铭这些业界“大佬”会来,包括阿里巴巴、惠普、戴尔这些国际顶尖企业在内的250家企业也将接踵而至。对于参与这场“大数据盛宴”的深远意义,还是马云一语中的、振聋发聩:如果大家错过了三十年前广东、浙江的投资机遇,今天一定不能错过贵州!
马云所说“不能错过贵州”,其实就是“不能错过贵阳”、“不能与数博会失之交臂”。这是因为,大数据超越想象,大数据时代正朝我们走来,而在这个发展潮流里,贵阳恰恰坐到了前排、走在了前列。就在今年4月间,贵阳又拿了个全国第一,近期将成立“全国首家大数据交易所”,将诞生一个万亿级别的交易市场,大数据产业链将开启“贵阳模式”,预计在未来3至5年,交易所日交易额将突破100亿元。
从来的说法都称,“机不可失,时不再来”。大数据时代亦是如此,没有今天的认准目标和果敢出手,肯定也难有将来的出类拔萃、脱颖而出。马云口中“不能错过贵州”,既是他个人深思熟虑后的一家之言,又何尝不能作为犹豫踟蹰、举棋不定者的有力催促?这种“大师级”的催促,说到底就是一种机遇来临时,对于“弄潮与识潮”的清楚观察和清醒判断。换言之,“弄潮”须先“识潮”,只有判明了途径、认准了方向,才能真正做到“勇立潮头”,并一步步地做得“风生水起”。
大数据时代的“弄潮与识潮”,也不只是产业巨头、业界精英们要善思多想的事。诚如一些刚刚谋职择业的网友所言,找好工作主要还得找准好行业,行业发展有前景的工作才是好工作;计算机改变世界,现在大数据也像计算机一样改变着世界,这个行业、这个产业的就业前景肯定就好,发展空间也就特别大,有前景的工作才是真正的“金饭碗”。可见,大数据时代带来的,将会是一种全面性和广泛性的渗透与改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29