京公网安备 11010802034615号
经营许可证编号:京B2-20210330
搜前途通过大数据解放HR_数据分析师
如今,一提到HR,人们最先想到的是那些带我们面试的人事美女们,实际上HR的工作不只是人才招聘,还包括人力资源规划、培训与开发、薪酬管理、绩效管理和员工关系管理五大部分,HR绝对不是悠闲的代名词。
近年来随着就业压力不断加剧,人才招聘问题被无限放大,加之企业用人荒,HR们经常被困在浩如烟海的简历里,无暇他顾。而当前人才招聘的效率低下,为了节约时间HR只能快速筛选简历,但是人才质量下降;如果保证质量,HR精筛简历又必须花大量时间和精力。如何提高招聘效率,解放HR,是提高企业人力资源管理的关键。
HR整天忙着筛筛筛
HR的工作主要为六部分,每一名HR的日常工作都或多或少的涉及到六大模块的每一部分。现实却是每到企业招聘高峰时,HR的工作重心往往要向招聘倾斜,其他工作又不能放下,所以只能加班加点。据调查,绩效管理这项流程每年耗时近200万个小时,德勤还为此重新设计了绩效管理方法。
一些互联网公司品牌形象好,薪酬福利很具有竞争性,备受求职者追捧,新浪的市场总监申晨在与大学生的交流讲座中提到“新浪每天都能收到1万余份毕业生简历,人力主管对每份简历的初筛工作都要在30秒之内完成”,HR只能重点照顾求职者的名字、上一次工作经验或实习经验、教育程度和期待薪资,以及个人照片等。时间紧,人手少,任务重,难度高,到底该采用什么方式,才能既便捷、高效,又准确地从一大批应聘者中选拔出合适的人才?这实在让人头疼。
职业大数据解放HR
HR所有工作的主要矛盾点之一即简历筛选,的确如新浪这样的企业每天上万份简历的筛选,如果精筛,恐怕新浪会有一半的员工在做招聘了。如何使用机器替代人工,并和人的主观判断相符,且筛选更加迅速,是当下人力资源领域一个值得思考的问题。过去为了速度,只能通过关键词筛掉不合格的简历,而不是选,计算机现在还难以做像人一样思考,因此计算机只能帮HR筛,不能帮HR选。
HR对简历的筛选包括求职者的专业、工作经历、特长、个人意愿等综合因素,如果通过计算机对简历分析,涉及到海量的数据和运算,真正实现有相当大的难度。什么样的人适合什么样的工作,无论是从组织选人角度,还是从个人职业发展角度,都是一个不可小视的重要环节。组织选错了人,不仅难以提高工作绩效,还可能带来负面的损失;个人选错了工作,不仅影响了能力的发挥,而且还会影响自己的终生发展。而这个环节现在却被草草对待,搜前途为了实现人岗匹配,改变招聘的现状,通过研究大数据算法,研究出基于职业大数据的Spider算法,在技术上实现了对简历内容的分析,从而实现通过计算机完成简历初筛的工作,大大降低了HR的工作量,同时其分析结果也能帮助求职者做职业通路引导,分析求职者的职业能力,在求职者和企业两端同时发力,从根本上提高招聘效率,真正将HR从繁琐低效的招聘工作中解脱出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22