
投资银行如何利用大数据预测行情
传统的华尔街选股者试图关注影响其投资的一些关键因素,诸如债券收益率、日元汇率,又或是石油价格和月度消费支出数据。
但一些新型的对冲基金公司认为,通过收集全球尽可能多的数据——从沃尔玛停车场占位情况的卫星图像到炼油厂释放出的热量信号,并且快速的投注以利用隐藏在这些数据集之间的关系,他们能够打败这些传统基金经理。
该方法体现了近来的一种投资转变,更多的依靠大数据和算法在竞争对手间赢得比较优势。首尔一家名为Jumpgate科技的公司宣称,他们正试图消除人为参与,放手让机器学习技术自由探索和利用世界日益增长的数据宝库。
那么对冲基金的人类创始人又将是何种角色呢?设计一个好的系统,让它可以利用大量的数据点,并收集更多的数据流供给该项目。Jumpgate,诚然规模不大,却已跻身于所谓的金融科技公司行列,他们试图将硅谷的科技创新融合进深谙金融市场的华尔街。
Jumpgate公司的董事长兼首席执行官Kristof Olesch自述其自13岁起就开始编程,16岁便开始在证券市场投资。目前该公司已经招募了一些工程类的博士毕业生。
一家更具规模的公司,总部设在纽约的二西格玛投资有限责任公司(TwoSigma Investments LLC),荣获本周《华尔街日报》头版的主角,编译了一款程序,让机器获取收益报告、天气预告和Twitter上的海量信息。
为了分配其价值240亿美元的管理资产,two sigma公司的策略是在进行一项交易前,基于这些数据产生不同的投资模型,然后用一种算法让模型之间彼此对抗,最终择优选取出最佳投资策略。
这些投资者们说,这是第一次,全球的计算机能够存储和学习从世界各地收集到的信息,这些信息来源涵盖超级计算机、智能手机,以及嵌入日常家居用品的小型处理器。
大部分的数据点可能帮不上股票投资者什么忙。有时,一个神秘的数据点只是一个神秘的数据点而已。
但是Olesch先生确信它远不止表面看来那么简单。传统的投资者只能籍由与公司管理层的会议、细致阅读财务报表和渠道检查来获得信息。而他则希望通过利用电脑的力量,能获得大规模的信息化优势。
Olesch先生指出:“柯达的终结是由于技术革新,而现在资产管理者的工作方式也面临同样的境况。” 他现在已有大约3000个数据流,他希望很快能够增加到约10000个数据流。
举个例子:商店停车场的商业卫星图像不但可以提供诸如商场交通等信息,也可以透露包括驾驶习惯、天气类型及其它众多人类基金经理无法预测的指标。
同样的,观察一个炼油厂的热信号能够推导出该厂设备是否满负荷运转。
“现在人们仅仅处理使用了全球1%的数据,” Olesch先生说道:“我们希望得到这些数据,而不是等着别人告诉我们数据处理已饱和。”
正因如此,现在很多公司专注于Olesch先生所说的“技术侦察”——想方设法接入各种数据流,无论来自开放数据还是通过与那些可能坐拥大量潜在价值数据的公司或机构合作而获得的数据。
到目前为止,Jumpgate这家在首尔成立,却在新加坡注册的公司,认为该战略行之有效。尽管和Two Sigma这样的大公司相比,它的基金规模还很小,但是Olesch先生表示其基金在头三个月中均业绩良好,即使在其基准——标普500指数都不景气的情况下,它仍保持每个月都是正收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08