
【IT168 调查报告】2012-2013中国IT技术趋势大调查活动于2012年10月16日启动,历经1个月的时间。在线调查期间,受到了来自ITPUB、ChinaUnix(以下简称CU)以及其它合作网站的网友的极大关注和积极参与。目前调查已经完满结束,所有的数据都在后台整理和统计之中。本次网上调查共回收调查问卷17,101份问卷,其中合格问卷为14,522份。从整体上看,今年的调查更专注,无论从数量上还是质量上都较去年有比较大的提高。
本次调查的内容涉及:企业信息化、桌面虚拟化、Hadoop架构、下一代防火墙、BYOD、IT运维和大数据应用等7方面的研究成果,这些将最终形成《2012-2013年IT技术应用趋势调研报告》,并将整合到《2012-2013中国IT应用技术蓝皮书》中,于2013年4月份第四届数据库技术大会上对外发布。
在过去的一年里,大数据给IT业界带来新的活力,新产品和解决方案层出不穷。针对大数据时代的新机遇、新挑战,IT168近期展开大数据应用专项调查,目的是通过调查结果揭示大数据时代下数据管理与分析应用产生的变化。这里所谓的数据的管理与分析应用,具体来说就是数据库及其他数据管理软件、数据挖掘和数据分析产品,以及商业智能工具。
大数据新技术趋势预测
大数据应用才刚刚起步,企业关注数据管理的哪些新技术呢?为了更好地了解被调查者的真实需求,在此次调查中增加对大数据应用趋势的分析,主要分为两个方面的内容,一是数据管理的新技术预测;二是商业智能的发展趋势。
▲被调查者关注的数据管理新技术
如上图所示,分布式存储与计算成为最受关注的数据管理新技术,比例达到29.86%;其次是内存数据库技术,占到23.30%;云数据库排名第三,比例为16.29%。此外,列式数据库技术、NoSQL也获得较多关注。从调查结果来看,以Hadoop为代表的分布式存储与计算已成为人们心目中大数据的关键技术。以SAP HANA为代表的内存数据库技术和以SQL Azure为代表的云数据库技术,也将成为占据重要地位的数据管理创新平台。
▲被调查者如何看待商业智能的未来
对于商业智能未来的趋势预测,调查显示排在前三位的是丰富的挖掘模型、实时的分析、精准的特定目的分析,其比例分别为27.22%、19.88%和19.11%。其后是社交网络分析、云端服务和移动BI。由此看出人们期待商业智能应用能够在这些方面做出改变。
以上趋势不难看出,在大数据时代,人们把焦点放在那些能快速改变现状的颠覆性技术上,大数据存储与计算、数据挖掘与分析,以及商业智能等应用将在未来大放异彩。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04