
2016考研择专业定院校 看准“6大数据”_数据分析师
考研择校择专业是一大要事,怎么选专业定院校呢?用数据说话是最好的途径。跨考名师提醒各位考生在报名定院校专业前先做好6类数据的调研,做好分析对比再下手。
一、招生人数
招生人数决定了总容量。如果太小,从一开始就决定了要采取挤进去的策略。如果较大,相对来说机会也就多出很多。当然,这不是绝对的。有些冷门专业招的人少,但也报的人少,甚至报不满。有的名校热门专业,招的人不多,但是报考每年都很火爆。
一般情况下招生单位各专业的招生人数变化不会很大。近几年,研究生的规模一直在扩大,招生人数总趋势当然也是在上涨。具体到招生单位,基本也是在小幅度上涨。缩减招生名额甚至撤销某个专业的情形很少发生。口说无凭,我们还是看数据。
上图是该院2014年的招生人数。学术型一共招371人,专业学位214人,总共585人。再来对比一下2015年该院的招生数据。
简单比较可以发现,今年相比上一年净增加173人。其中学术型增加45人,专硕增加128人。当然,这也与今年的推免生新政策有关系。推免生有493人,那么统考生一共有265人。虽然推免生增加,但是,总的机会也增加了不少。
二、报考人数若能知道这个数据,就能知道自己的竞争对手到底有多少。然而,当年的报考人数一般看不到,只能看到前几年的数据。不过这些也足以判断出某个学院专业的竞争激烈程度。如果报考人数太多,推免的也不少,留给统考生的机会相对较少,那么该专业竞争很激烈。难度无疑大了很多。
三、录取人数
这里的录取人数指的是复试完最终的录取人数。这个与前一年公布的“招生人数”可能有些出入。特别是一些名校的热门专业,竞争激烈难度大,可能存在“大小年”现象。如果碰到生源特别好,那么也有可能扩招几个名额。所以,机会总是有的,关键是看考生的综合实力和表现。
四、报录比
真实的报考人数和录取人数作对比,就得出每年的招生报录比。这是一个很重要的数据,是衡量某个专业报考热度的核心指标。如果报录比一直居高不小,说明该专业持续很热。如果忽大忽小,这就说明存在大小年现象。以下是上交大电院近几年的报考人数、录取人数和报录比,同学们感受下。
上述表格数据是上交大电院2013年和2012年的报考录取数据(2014年尚未公布)。总的说来,上交大电院学硕比专硕的报录比高出不少,其中电子信息科学与技术和计算机科学与技术及仪器仪表工程(专硕)这三个专业呈上涨趋势。这就意味着竞争更加激烈。
其他专业变化幅度很小,只有计算机技术(专硕)专业是个例外。2013年最终录取35人,报考只有29人,多出6人。这6名考生从哪里来?笔者猜测,很有可能是在复试过程中从报考计算机科学与技术(学硕)专业的考生中调剂过来的。所以只要成绩足够优秀,就有机会。
五、推免人数
上交大电院在近几年招生目录中只说明推免总人数,具体到各个专业有多少人不得而知。其官网也没有公示推免生名单。不过笔者在上交大船建学院发现了该院2014年的推免生名单。下面就分专业整理一下。
对比船建学院2014年招生人数:总共211人,其中学术型131人,专硕80人。即可得知统考生一共111人,其中学术型69人,专硕42人。如果有更多的数据就可进一步得知具体每个专业统考生有多少。这样就能深入了解上交大具体某个专业的报考情况。
推免生数据一般会在每年10月正式报名的时候公布。所以,建议考生在报名时最好核查一下所报院校专业的推免情况。如果某个专业推免人数太多或者全部是,那就要慎重选择或者重新报考。否则,可能面临严峻挑战,甚至从这个时候就已经没有被录取的机会。
六、复试分数线
复试线的重要性在这里不用多说了。大部分招生单位都会公布这些数据,或者在研究生院,也有的在各自院系以通知的形式发布。上交大属于34所自划线高校,每年一般会在3月初就公布各个院系专业的复试线。
在这里要强调一点,过了复试线只是意味着有机会参加复试,并不一定能被录取。所以这里面还有一个最低录取线。这条线肯定比复试线稍高一些。因此,考试点考研专家提醒同学们一定要清楚,考研复习要多下功夫,初试一定要考过复试线。如此,才有可能取得最终的成功。仅仅过了复试线还是比较危险。成绩是王道,加油吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19