
5年前,“数据科学家”的工作描述还不存在。没人刊登招聘启示寻找数据科学领域里的专家,你在学校里也找不到这个专业。现在,雇主们正在争夺这些专家,而培养这些专家的课程在众多大学里开始层出不穷。《哈佛商业评论》(Harvard Business Review)甚至声称数据科学家是21世纪“最性感”的工作。
数据科学家取得海量数据,试图从中找出有用的信息。这项工作综合了统计学和编程,来鉴别出可能对一家公司的营收有巨大影响的因素——有时可能是微妙的因素,从某人是否会点击某类广告,到一种新的化学物在人体中是否有毒性。
华尔街、麦迪逊大道、底特律一直以来都聘用数据专家来分析商业数据。这个专业技能的出现反应了目前在一些行业里数据的规模和种类的扩展,比如网络上有关顾客的数据收集。现有的数据比单个经理们能够应付的量大太多、变化太快,以至于用传统方法难以分析。
智能手机的出现让零售商们看到了一个新的提供有价值数据的来源。举例来说,沃尔玛正在争夺引进更多的数据科学家,为其数十个职位刊登招聘广告,包括“处理大而快的数据的工程师”。工厂和工业设备上的传感器也在传输堆积如山的新数据,促使GE聘用数据科学家分析这些数据。
“数据科学家”这个称号是在2008年由当时在LinkedIn和Facebook工作的两名数据分析师发明的。现在许多创业公司正把自己的业务基于分析大量数据的能力——通常是来自不同源头的数据。比如,ZestFinance有一个预测模型,使用成千上万的变量来决定借贷商是否应当提供高风险贷款。该公司的数据科学家约翰·坎迪多(John Candido)说,这个模型使得承保风险比传统借贷商承担的风险低了40%。“对我们而言,所有数据都是贷款数据。”
杰克·克拉姆卡(Jake Klamka)提供一个6周的研究职位,帮助把来自数学、天体物理甚至神经科学领域的博士生们放到数据科学的职位上。他说,数据科学家已经变成一个流行的职位名称,部分是因为它把越来越多随意命名和重叠的工作角色归结在了一起。“我们这里各个领域的人都有,在他们的研究中都要处理大堆的数据,”他说,“他们需要知道如何编程,同时也需要强大的沟通技能和好奇心。”
对于最好的数据科学家,创造力和编程能力同样重要。Kaggle公司组织竞赛鼓励数据科学家发现分析海量数据集的最佳方法。公司执行长安东尼·戈德布卢姆(Anthony Goldbloom)说,那些拔尖的参赛者(该公司网站上有8.8万名注册参赛者)中,许多都来自天体物理学或电子工程领域。目前排名最高的参赛者是新加坡的一名精算师。
大学院校正开始响应市场的需求。斯坦福大学统计系主任冈瑟·沃尔瑟(Guenther Walther)说,学校计划在该系开设数据科学硕士学位。哥伦比亚大学、加州大学旧金山分校等学校已经开设了约几十个相关课程。Cloudera公司销售的软件可以处理和组织大规模数据。该公司在4月宣布将和7所大学合作,在本科课程中提供如何运用“大数据”技术的专业训练。
Cloudera的教育项目主管马克·莫里赛(Mark Morissey)说,技能短缺问题正在逼近,“市场不会以它目前想要的速度成长”。这推动了工资的上涨。在硅谷,刚入行的数据科学家的薪酬为11万到12万美元。
其他人认为这个趋势可能创造新的外包领域。目前在Kaggle的分数榜上排名第20位的沙希·戈德博尔(Shashi Godbole)是一名来自印度孟买的数据科学家,他最近完成了由Kaggle安排的一个按小时计酬的顾问工作。这是Kaggle目前正在发展中的新业务。戈德博尔为芝加哥的一个小型健康倡导非营利机构工作,现在还在投标其他工作。(他每小时赚取200美元,Kaggle从中赚300美元)。他在Kaggle的这些工作目前还是兼职,但他说,有朝一日它可能变成他的主要收入来源。
在数据科学家们自己看来,这个工作当然不像人们“粉饰”得那么性感。Cloudera的资深数据科学主管乔希·威尔斯(Josh Wills)说,自己的大部分时间都花在清理混乱的数据,比如把数字放到正确的栏中,开始筛选。
“我是个数据门房。这就是21世纪最性感的工作,”他说,“这么说真让人受宠若惊,但同时也让人有些困惑。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15