京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下的互联网金融精细化运营_数据分析师
在刚刚过去的两会中,政府工作报告首次提出“互联网+”概念,互联网与各传统行业的“加和”效应迎来了一波全民讨论的热潮。
传统行业以金融为例,在与互联网的“加和”历经创新、阵痛、借鉴、突破、融合之后,“互联网+金融”已然深刻改变了传统金融的经营模式和经营格局。近年来不断涌现的新兴服务和模式:第三方支付、手机银行、手机理财、互联网货币、P2P、众筹,让“互联网+金融”的力量一再彰显,也让更多的“长尾用户”享受到了普惠的金融服务。
尤其在今天,伴随着移动互联网和大数据技术的成熟及应用,互联网金融更将迎来几何倍的爆发式增长。企业如何持续依靠技术驱动进行创新性发展?大数据如何助力企业的精细化运营?4月8日,国内第三方消息推送服务商极光推送联合宜信宜人贷、中国社会科学院金融所银行研究室及金融大数据公司量化派在3W咖啡举办了一场科技沙龙,探讨“大数据下的互联网金融精细化运营”话题。
会上,宜信宜人贷CTO段念以宜人贷推出的国内首个大数据信贷产品——“极速模式”为例,解答了关于“互联网+P2P”,那些已经发生的、正在发生的、将要发生的。
宜信宜人贷CTO段念
互联网+P2P不是线下的搬运工
P2P是个充满挑战的行业:隐性门槛极高、充满机遇却也暗藏风险。特别是在中国现有信用体系不健全和行业监管缺失的前提下,P2P的行业环境更加鱼龙混杂。
近年来随着P2P平台挪腾线上,欺诈成本降低、欺诈手段变换,平台的信审和风控机制也亟需迭代,为线上P2P平台提出了严峻的命题要求——不但要引入线下的规则作为参考和经验,更要广泛采集用户信息和行为,来打造全新的信审和风控模型。
极速模式国内首款大数据信贷产品
2014年4月,宜人贷推出了国内首款大数据信贷产品——“极速模式”。这是一款面向具有“充分互联网行为”人群的手机借款服务。
在“极速模式”下申请借款的人群,至少需要满足两个条件:一,拥有信用卡以及接收信用卡电子账单的邮箱;二,拥有电商网站的账号及真实的交易记录。
采集信用卡账单及电商网站信息后,系统结合用户提供的个人信息——如手机号、姓名、身份证以及银行卡,将这些数据放入后台的反欺诈系统,反复交叉验证用户数据,作为判断是否授信以及衡量授信额度的依据。
上线一年来,“极速模式”现已达成“1分钟授信,10分钟审核”,最快当天到帐、额度最高十万元的快速借款。目前累计放款突破9亿元,为超过百万的用户提供了信用评估服务。
极速背后线上之上
开发“极速模式”的初衷,是基于宜信九年服务百万用户的风控经验,更是联合宜人贷“线上”和“指尖”科技达成的创新成果。
互联网要求“轻”而“快”,用户的痛点是“快速”和"便捷";金融要求“缜密”和“严谨”,企业的痛点是风险控制。落地到“互联网+P2P”的命题下,则是用户渴望“输入信息少、审批速度快”和企业希望“审批信息多、过程更翔实”;看似对垒的两方需求,如何通过互联网和移动互联网技术来解决?
第一,线下信息如何转移到线上?
凭借互联网技术,线下所需提交的信息有了更高效的采集方式。原本动辄四、五十项信息的手工填写,如今只需要用户简单的信息录入和“授权读取”操作,系统便能够自动完成。
以通话和信用卡账单为例,原先需要用户本人去营业厅和银行查询、打印并提交,如此一来用户体验很差,二来人工审核造假成本也较高;现在,通过“极速模式”,只需要录入信用卡账单的接收邮箱及手机号,不但系统可以秒读信息;而且信息可以迅速放入反欺诈模型中进行识别校验。
第二,更广泛的信息搜集渠道。
除此之外,“极速模式”背后有一套代号为“蜂巢”的信息抓取系统。我们从不同维度采集用户信息,比如电商网站以及一些散落在互联网上的边缘性信息,用来丰富用户形象,以得到更精准的数据分析结果。
第三,更多重的甄别手段。
互联网技术的发展,尤其是移动互联网技术的发展,为我们收集更多纬度的信息,实现多重甄别提供了技术上的可能。
例如,手机App可以自然地提供用户的地理位置等信息。如此一来,恶意造假的黑中介造假成本便大大提高了。一旦黑中介通过手机客户端提交借款申请,我们便可以基于其地理位置进行数据分析,针对提交频率高、逾期率高的地点进行额外的风险观察,从而建立基于地理位置的黑名单区域。
线上和指尖是未竟之境
互联网和移动互联网技术帮助企业获得更广泛和真实的用户数据、更多重的甄别手段,P2P平台基于此将陆续展开大数据下的精细化运营。
据CTO段念介绍,宜人贷“极速模式”较之以往模式不但快的多、轻的多,而且逾期率也非常低,未来会进一步推广和迭代。
接下来,宜人贷会朝着“线上”+“指尖”的方向继续前进,在“未竟之境”通过技术手段持续提升平台效率,为更多的借款人和出借人提供高效优质的金融服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08