
跨界掘金“大数据” 基金也玩“互联网+”
近期,不少公募基金联合专业互联网企业已经或酝酿发行“大数据”基金,给基金印上了深深的“互联网+”烙印。人们不禁要问,究竟什么是“大数据”基金,它又能为投资者带来怎样的回报呢?
选股标准是什么?大数据说了算
目前,市场中已有多只跟踪不同大数据指数的基金。据不完全统计,其中既包括银河定投宝、广发百发100指基等已经发行一段时间的基金;也包括即将发行的南方大数据100基金;此外,博时基金也将推出两只与淘金100指数挂钩的基金产品。
值得研究的是,这几只基金挂钩的数据在选股模式中各具特色。其中,广发百发100指基挂钩的是百发100指数,该指数由百度与中证指数公司、广发基金合作推出,业内人士表示,其最大的特点就是引入了“投资者情绪指标”。何为“情绪指标”?根据官方解释,当某只股票被搜寻的时候,意味着有投资者对这只股票产生了关注。因此,股票在百度的搜索量某种程度上就可以反映投资者目前关注的股票以及投资偏好。将这样的因子加入到传统的量化模型中,就能优化选股模型。
而银河定投宝追踪的中证腾安指数是国内第一家由互联网媒体与专业机构编制发布的A股指数。业内人士表示,与百度百发的思路不同,该指数并没有利用互联网引入模型因子,而是利用腾讯微博的影响力挖掘了一大批来自于财经媒体、证券投资、资本运作、行业研究等不同领域的专家以甄别股票。
即将发行的南方大数据100基金挂钩的则是i100指数,该指数由南方基金、新浪财经和深证信息公司联合推出。据介绍,该指数综合财务、市场驱动、大数据三大因子形成选股策略,通过对财经领域的“大数据”进行定性与定量分析,同时考量股票基本面与市场驱动情况,精选出综合排名靠前的100只股票组成指数样本股。
此外,上周“新鲜出炉”的中证淘金大数据100指数则是由蚂蚁金服、博时基金、恒生聚源及中证指数共同发布的全球第一个电商大数据指数。其官方资料显示,该指数是基于海量的电商交易数据,经过大数据与金融的碰撞后,产生的全球首个电商大数据指数产品。该指数量化投资模型由行业景气指数、财务因子、市场驱动因子等构成。
量化模型创新 最终还需市场检验
值得注意的是,相较于传统指数,大数据指数调整周期普遍较短。例如,i100指数、中证淘金大数据100指数和百发100指数的换股周期均为1个月,而像沪深300指数这样的传统指数,则是每半年调整一次成分股。业内人士表示,大数据指数样本股调整周期缩短,可以起到摊薄风险、提高收益的作用。
事实上,国外也已经有运作得颇为成功的先例。在2012年7月,保罗·霍廷(Paul Hawtin)成立基于推特(Twitter)、新闻媒体信息等数据进行交易的对冲基金。根据CAYMAN ATLANTIC在其官网披露的基金历史收益数据显示,截至2014年10月,该基金的累计收益率达到51.05%,年化收益率超过20%,在基金运行的28个月中有24个月获得了正收益,最大回撤为-0.33%。
那么,神乎其神的大数据基金真有那么厉害吗?它是不是基金公司用来吸引投资者的营销噱头呢?对此,数米基金研究部主管王炜表示,大数据基金并不仅仅是一个营销噱头,“而是一种创新的量化决策模型”。他指出,大数据紧紧依靠数据、同时创新量化模型,确实可为投资者带来实实在在的好处。德圣基金首席分析师江赛春则表示,虽然现在许多基金都冠以“大数据”头衔,但是“不一样的数据来源和操作方法带来的指数、投资决策是不同的”。因而并不能说所有大数据基金都很好,“最终还是需要市场对其进行检验”。
对于“大数据”基金的流行,江赛春也提出了质疑:“大数据基金的数据来源平台非常多样,不同的平台有不同的用户,我们并不知道数据是怎样被处理的,也不知道基金公司在挖掘数据后是否会加以处理再推出市场。”他认为,基金公司在挖掘数据后,如果再经人工加工,“那数据就会失去原本的意义”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01