京公网安备 11010802034615号
经营许可证编号:京B2-20210330
畅谈大数据:扭转倒闭浪潮_数据分析师
如今,只看到一个大浪来了的人就如同P2P倒闭潮中的那些曾经的佼佼者,迅速被时代推向巅峰之后,迎来的是同样快速地被时代拉下云端,狠狠地摔在地上。想要一直站在时代的巅峰上,就要在乘着一个巨浪的时候就已经知道下一个巨浪在什么地方、何时起、何时落。
今年元旦过后没多久,一个令人震惊的消息从东莞传向全国,兆信通讯实业有限公司董事长高民自杀。据报道兆信通讯欠款累计4000余万,在工厂不景气的背景下,这四千万成了高民的催命符。在明知道年后就会有大笔订单的情况下,高民依然选择了走上绝路。由于各种原因导致的产业倒闭潮这几年数不胜数,从几年前的纺织业倒闭潮到今年依然还在进行的P2P倒闭潮,一批又一批的中小企业从蓬勃的春天迅速走向寒冬。
随着信息技术的发展,时代发展的速度越来越快。人类社会从需要用几百年酝酿一次工业革命发展到了几年一次小革命的时期。革命的浪潮催生的是一批又一批的超级巨头,同时也带动了行业内无数中小企业的发展。只是,从前那种单纯跟着大浪前进的企业运作方式似乎已经逐渐地被时代所淘汰。因为大浪升起的越高,落下的就越狠。能够将企业一把推起的巨浪,瞬间也能将企业狠狠地摔得支离破碎。
如今,只看到一个大浪来了的人就如同P2P倒闭潮中的那些曾经的佼佼者,迅速被时代推向巅峰之后,迎来的是同样快速地被时代拉下云端,狠狠地摔在地上。没有智慧的人还坐在地上感叹,都是时运不好。想要一直站在时代的巅峰上就要在乘着一个巨浪的时候就已经知道下一个巨浪在什么地方、何时起、何时落。
那么我们该如何站在巨浪中眺望呢?
大数据给了我们方向和答案。
我在之前的文章中讲到过狭义大数据论和广义大数据论。也提到过用狭义大数据来推算行业的规律。很多人读了以后其实并没有读懂,似懂非懂的那些人又觉得这些东西太高远,很难和实际结合。好多人透过各种方式联系我,希望我能够写一些所谓“接地气”的文章,一些能够真正解决企业,特别是中小企业困境的方案。
我其实一直犯了一个错误。什么错误呢?大数据论在我心里面装着,但却由于篇幅等限制没法全盘托出。后果就是,在通过已有的二十余篇文章一点一点地将大数据论告诉大家的过程中,总会有不连贯的地方。有些人只读了其中十篇,没有读到《畅谈大数据:广义大数据论与狭义大数据论》,对于我这套大数据论的基础体系并不了解。所以在读其他文章的时候经常摸不到头脑。或是跟着我的脚步将二十余篇文章都读个遍,却还是觉得似懂非懂。这些个问题,我很难在几篇文章里面说清楚。大约也是我的智慧还不够圆满。要是有老子、庄子、孔子这样的大家水平,短短几百几千字再大的道理也都讲的透透彻彻、清清楚楚。
那么怎么解决呢?在我看来,唯有将我对于大数据论的所有系统的理解,著成一部书,这样有足够的空间来将这个问题讲清楚,也可以让没有从头看这些文章的人有一个整体了解大数据论的机会。
在这本书出版之前,我还是会定期发表我对于大数据的看法,不过我会相对地讲得更细一点,更“接地气”一点。实际上,之前已经发表的二十余篇,如果真的读懂了,也是很“接地气”的。何以见得?拿人人都知道的万有引力举例。万有引力的理论高不高呢?自然是极高。那么它接不接地气呢?想想看多少工厂的机械在按照这个理论工作吧。水力发电、航空航天、飞机大炮不都是在这一理论下的应用?刚刚讲的革命浪潮,有起有落,也正是万有引力的作用。这万有引力,看似极高,实际上落得很低、很低。
正如大数据论,看似前沿、崭新,似乎与中小企业沾不到边,也无法解决棘手的问题。实际上相比锦上添花,大数据最大的作用是雪中送炭。
那么我们应该如何运用大数据来解决现在很多企业都面临着的破产危机呢?
这个问题我从狭义大数据和广义大数据两个角度来解释。
狭义大数据技术为我们提供了站在浪潮上眺望下一个浪潮的能力。通过对公司大数据的分析,我们能够准确地预测整个行业的走向,从而预测下一个浪潮的起点。这样才能够占领预先在浪潮将落时站住下一次浪起的先机。这说容易也容易,说不容易也很难。
说容易,是因为每一个企业都是行业内的一个因子,它的发展暗合着行业整个的发展。有一句成语叫做一叶知秋。分析一片叶子就能够知道秋天要来了。我们通过分析公司自己的大数据就足够预测行业的动向。于是我们就知道我在之前文章中讲到的大数据化对企业有多么重要。大数据化的进程需要一定时间,但是在执行的初期就能够见到效果。这是容易的部分。
大数据化后,企业手握着自己内部大数据,不论是分析客户心理、研发和改进产品还是掌握行业动态,都将会游刃有余。在实际操作中,一家公司的大数据与一万家公司在大数据的度量衡中没有什么太大区别。以天文数字计算的数据远远超过我们现阶段能够驾驭的最大量,那么即使将所有公司的大数据全部拿过来,也只是将总量从天文数字A增加到天文数字B。
那么大数据化对于中小企业的价值就不言而喻。狭义大数据的战场,企业规模是最次要的条件。
那么说容易却很难又如何解释?
一叶知秋固然很好,但是我们也要知道另一个成语,一叶障目。一门心思投入在狭义大数据的技术中,绝不是中小企业应有的行为。因为缺乏对大数据本质认识的企业,即使将内部大数据研究到极限,也无法做出正确的取舍、正确的决定。这就是中小企业和产业巨头之间的另一个决胜点。
我们的目标是让企业乘风破浪,一直保持上升的状态。而这个目标也是所有行业巨头的梦想。可是真正能够完成的有多少?根据美国著名商业顾问吉姆•柯林斯(JimCollins)的调查,全球五百强企业中仅有11家能够连年持续增长。穷尽全世界全部的精英,也只有11家企业能够完成这个目标。根据柯林斯的研究,这11家企业之所以成功的秘密,是因为他们的领导者都具备谦逊的品质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15