京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015-2019年中国大数据行业投资分析及前景预测报告
继物联网、云计算之后,大数据已经成为当前信息技术产业最受关注的概念之一。大数据是为了更经济地从高频率获取的、大容量的、不同结构和类型的数据中获取价值,而设计的新一代架构和技术。
人们普遍将该定义概括为四个“V”,即更大的容量(Volume,从TB级跃升至PB级,甚至EB级)、更高的多样性(Variety,包括结构化、半结构化和非结构化数据),以及更快的生成速度(Velocity)。前面三个“V”的组合推动了第四个因素——价值(Value)。
云计算、物联网、智慧城市、移动互联,新技术与应用的不断涌现,加速了“大数据”时代的到来。大数据,已经超越数据本身,转向数据的资产化和服务化,转向挖掘与分析数据带来新商业价值,转向以技术维护国家安全利益,并为信息服务产业和传统商业模式带来了巨大的机遇与挑战。
2013年,大数据应用带来了令人瞩目的成绩。作为新的重要资源,世界各国都在加快大数据的战略布局,制定战略规划。美国奥巴马政府发起了《大数据研究和发展倡议》,斥资2亿美元用于大数据研究;英国政府预计在大数据和节能计算研究上投资1.89亿英镑;法国政府宣布投入1150万欧元,用于7个大数据市场研发项目;日本在新一轮IT振兴计划中,将发展大数据作为国家战略层面提出,重点关注大数据应用技术,如社会化媒体、新医疗、交通拥堵治理等公共领域的应用。中国的“基础研究大数据服务平台应用示范项目”正在启动,有关部门正在积极研究相关发展目标、发展原则、关键技术等方面的顶层设计。
伴随互联网日益渗透人们的日常生活,基于社交平台和搜索引擎的用户行为数据开始被广泛应用于各个领域。因为能有效映射市场主体的情绪,互联网大数据也逐渐成为投资市场新的“基因”。我国积极支持大数据应用发展,在2015年3月5日举行的两会中,李克强总理在政府工作报告中提到,制定“互联网+”行动计划,推动移动互联网、云计算、大数据、物联网等与现代制造业结合,促进电子商务、工业互联网和互联网金融健康发展,引导互联网企业拓展国际市场。
目前我国大数据产业还处于发展初期,市场规模仍然比较小,而且主导厂商仍以外企居多。2016年我国大数据应用的整体市场规模将突破百亿元量级,未来将形成全球最大的大数据产业带。然而,相对于发展前景的乐观预测,我国发展大数据产业面临的现实挑战更值得认真分析和对待。
中投顾问发布的《2015-2019年中国大数据行业投资分析及前景预测报告》共十章。首先介绍了大数据和大数据产业的定义、特点、地位等,接着分析了大数据的发展背景及影响因素,然后重点分析了国内外大数据行业的发展,并对重点行业大数据的应用、大数据重点应用领域进行了细致的透析。随后,报告详细解析了国内外大数据行业重点企业的发展形势,最后重点分析了大数据行业的投资状况,并对其未来发展前景做出了科学的预测。
本研究报告数据主要来自于国家统计局、中投顾问产业研究中心、中投顾问市场调查中心以及国内外重点刊物等渠道,数据权威、详实、丰富,同时通过专业的分析预测模型,对行业核心发展指标进行科学地预测。您或贵单位若想对大数据行业有个系统深入的了解、或者想投资大数据行业,本报告将是您不可或缺的重要参考工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08