
2015年5个大数据技术预测_数据分析师培训
大数据技术快速进化,各种迹象显示2015年仍将持续。MapR的联合创始人兼CEO John Schroeder预测,在2015年里,五大发展将会主导大数据技术。
在短短几年里,大数据技术从炒作的概念变为新数字时代的核心破坏者。2014年,公司里越来越多的大数据举措从测试步入生产。2015年,大数据将在企业里进一步推进,使用更多的用例(特别是实时用例),Hadoop分布式专家MapR的联合创始人兼CEO John Schroeder说。
Schroeder说:“今年,机构将覆盖之前的初次批量实现,进行大数据实时部署。现有的行业领导者和那些后起之秀已经付出了巨大努力,它们通过将新的大数据平台合并到‘动态’数据分析中来影响业务,这些实现将驱动行业的发展。”
Schroeder说五大发展将会主导2015。
1.数据敏捷性成为焦点
对于许多需求来说,遗留的数据库和数据仓库的处理过程过于缓慢和僵化,因此数据敏捷性是大数据技术发展的驱动力之一。在2015年,Schroeder认为,随着机构将他们的注意力从捕获和管理数据转换到使用它们,数据敏捷性将会更加集中。
他说:“遗留的数据库和数据仓库如此昂贵,以至于需要DBA对数据进行全面综合和结构化。前期的DBA成本推迟了对新数据源的访问,而随着时间的推移,这刚性的结构也很难改变。最终的结果就是,遗留数据库不够敏捷,不能满足今天多数组织的需要。”
他补充说:“最初的数据项目集中在目标数据源的存储。机构将会把自己的注意力转移到数据敏捷性上,而不是关心正在管理着多少数据。执行和分析数据的能力又是如何影响操作的?当用户偏好、市场条件、竞争行为和操作状态发生变化时,如何才能快速适应和响应?这些问题将会在2015年指引大数据的投资和规模。”
2.机构从数据湖泊转移到数据处理平台
从某种程度上来说,2014年是数据湖泊(或者数据中心)的一年。基于对象的存储仓库以其原生格式(无论是结构化的、非机构化的或半结构化的)保存着原始数据,直到可以使用。数据湖泊有着强烈的价值主张,它们代表着一个可伸缩的基础结构,这样的结构经济(降低了成本)又敏捷。
Schroeder认为,随着处理数据的多计算和执行引擎就位,数据湖泊将会在2015年继续发展。它不仅会更有效,它还会创建一个单点管理和一个单点安全。
“在2015年,随着机构从批处理转移到实时处理,将Hadoop、数据库和基于文件的引擎集成到他们的大规模处理平台,数据湖泊将会有所发展”,他说。 “换句话说,它并不是关于数据湖泊中支持大量查询和报告的大规模存储。2015年的大趋势是,围绕事件和数据的实时持续访问和处理,以此来获取稳定的状态和及时采取行动。”
3.自助服务大数据成为主流
大数据工具和服务的进步意味着,在2015年,商业用户和数据科学家访问数据的瓶颈将逐渐缓解,Schroeder说。
2015年,IT将会拥抱自助服务大数据,允许商业用户使用大数据自助服务,他说。“自助服务授权开发者、数据科学家和数据分析师直接控制对数据的探索。”
“之前,需要IT技术来建立集中的数据结构”,他补充道。“这是一种耗时和昂贵的做法。对于一些用例,Hadoop已经使得企业适应了‘结构准备好’。高级一点的机构将会转移到执行上的数据绑定,远离中心结构,以此来满足持续的需求。自助服务加快机构利用新数据源以及回应机会和威胁。”
4.Hadoop供应商整合:新商业模式的发展
早在2013年,因特尔引入了它自己的Hadoop版本,声称这个版本将会与原版有所不同,它采用一种增强的方法,将Hadoop直接置入到因特尔的机器中。但是一年后,因特尔放弃了它自己的版本,然后重磅推出Hadoop发行版供应商Cloudera。
当时,因特尔注意到,客户们都在观望Hadoop市场如何打开。Hadoop的选择实在是太多了。Schroeder相信,Hadoop供应商的整合在2015年将会继续,而失败者将会停止它们的发行版,将注意力转移到其它地方。
“现在,我们已经贡献开源代码20年了,它为市场提供了巨大的价值”,Schroeder说。“技术处于成熟阶段。技术生命周期始于创新和高度差异化产品的创造,止于产品最终商业化。[Edgar F.] Codd于1969年使用创新而建立了关系数据库概念,1986年也导致了Oracle IPO,而起始于1995年的第一个MySQL版本。所以历史上,数据库平台技术成熟之前,为了看到商业化,它花了26年时间的创新。”
“在技术成熟周期中,Hadoop是比较早的,自Google发布萌芽的MapReduce白皮书起,仅仅只有十年的时间”,他补充道。“在初级概念发布仅10年后,Hadoop在全球被采用,超越以往任何其它数据平台。Hadoop正在创新阶段,所以供应商误采用‘Red Hat for Hadoop’策略已经在市场上出现了,尤其是因特尔和最近的EMC。”
Schroeder相信,2015将会见到一个崭新的、更微妙的开源软件的发展,它们会结合深度创新和社区开发。
“开源社区对于建立标准和共识是至关重要的”,他说。“竞争是催化剂,它将Hadoop从最初的批分析处理器转换成一个全功能数据平台。”
5.企业架构师不再炒作大数据
2015年将会看到,企业架构师会成为焦点,因他们对Hadoop技术的深入理解,得到定义更好和更成熟的大数据应用需求说明,包括像高可用性和业务连续性等元素。
“在数据中心中,随着机构快速从试验转移到实际应用,企业架构师将前台和中心转移到实际应用”,Schroeder说。“IT领导在决定适应SLA的基础架构、提供高可用性、业务连续性和适应关键业务需求上就很重要了。在2014年,围绕Hadoop蓬勃发展的生态系统,拥有大量的应用、工具和组件。在 2015年,市场将集中在将Hadoop集成到数据中心,并交付业务结果所需的跨平台差异和架构上。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15