
中国大数据技术自主化需求日益迫切_数据分析师
借助大数据治国必须加强核心技术和产品研发,但专家提醒,要避免走国产操作系统研发的老路。事实证明,PC时代依靠政府资金研发的国产操作系统至今无法撼动微软的垄断地位,如今的移动互联时代,要挑战安卓的地位也非常困难。在国内外差距巨大的现实情况下,我国基础软件实现赶超,必须走合作开源之路。
国家信息中心研究员宁家骏认为,政府不应再定向支持某些企业,应变“相马为赛马”、变资金扶持为市场引导,鼓励有创新能力的企业都参与进来,积极利用开源模式和开放社区资源,形成我国大数据产业发展的开源生态系统,尽快实现我国大数据技术的自主自控。
宁波市智慧城市建设协调处副处长姚坚建议,应尽快开始实施“去IOE”。比起使用IBM小型机每年的维护成本,去IOE的成本不算大。如果国内技术能够实现去IOE,应该大力倡导,同时国家层面提供一些可靠的技术保障,自上而下实施去IOE。
专家介绍说,目前大数据的关键技术研发突破主要表现在以下几个方面:一是不同数据库类型大数据的集中,能够在不同数据类型之间进行交叉分析的技术,是大数据的核心技术之一;二是不同政府部门之间的大数据共享与交换机制;三是双活容灾备份技术构建的大数据应用平台,虚拟机从一个中心切换到另一个中心的时间接近于零。
不少业内人士还建议,可以通过具体师范项目推进大数据治国进程。比如在节能降耗、环境治理、交通运输、食品安全、金融服务、健康医疗等关系国计民生的重点领域,通过政府购买企业服务等方式推动大数据应用的政企合作,改进政府管理和公共治理方式。
事实上,大数据应用已经引起美、英、日等国政府的高度重视,多国将大数据产业发展定位为国家战略,密集出台多项专门政策,一方面开放数据,给予业界高质量的数据资源,一方面在前沿及基础性研究上投入大量资金和人力,领跑大数据发展。
美国政府早在2002年就开发了一个容量巨大、集聚性强的大数据基础架构;2009年,“一站式数据下载”网站data.gov正式上线,囊括了交通、经济、医疗、教育和人口服务等方面的海量数据;2012年,奥巴马政府颁布了高达2亿美元的《大数据研究和发展计划》,白宫科学技术政策办公室、美国国家自然基金会、美国国防部、美国能源部等多个联邦部门和机构,均参与其中。
欧盟2010年正式发布“欧洲数字化议程”,2012年在“欧洲数字化议程及其挑战”中制定了大数据战略。
此外,韩国、日本、新加坡等亚洲国家,也从国家战略层面积极推动大数据产业的发展。这些大数据应用领先的国家有三个显著特点:首先,政府大数据应用项目多基于共享存储的结构化数据库,并不使用实时、动态和非结构化或半结构化的数据;其次,公共部门致力于规范大型而复杂的数据集,政府期望通过大数据应用提升政府服务民众的能力,解决国家面临的重大挑战问题,如经济、医疗、就业、自然灾害和恐怖袭击等;第三,政府设立的大部分大数据项目刚刚起步或计划实施,多数仍处于发展的初级阶段。
全国政协委员、九三学社中央副主席赖明说,从世界发展潮流看,全球的大数据应用整体处于发展初期,我国大数据应用也刚刚起步。应抓住当前大数据技术以开源为主、尚未有任何国家形成绝对垄断的有利契机,改变我国长期处于信息产业链末端赚取低端利润的现状,争取战略制高点。
腾讯互联网与社会研究院首席经济学家孟昭莉说,全球大数据细分行业内聚集了大中小型企业,中国一些大数据领军企业和学界也在发力,目前虽未取得领先,但短时间内实现弯道超车也是有可能的。
“丰富的数据资源为我国大数据发展带来了肥沃的土壤。”宁家骏说,中国拥有全球第一的人口数、互联网用户数和移动互联网用户数,国土面积广、经济体量大,这些都是其他国家难以企及的海量数据资源和应用需求潜力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01