
云计算是一种新型的超级计算方式,以数据为中心,是一种数据密集型的超级计算。在数据存储、数据管理、编程模式等方面具有自身独特的技术。
1 数据存储技术
为保证高可用、高可靠和经济性,云计算采用分布式存储的方式来存储数据,采用冗余存储的方式来保证存储数据的可靠性,即为同一份数据存储多个副本。
另外,云计算系统需要同时满足大量用户的需求,并行地为大量用户提供服务。因此,云计算的数据存储技术必须具有高吞吐率和高传输率的特点。
云计算的数据存储技术主要有谷歌的非开源的GFS(Google File System)和 Hadoop 开发团队开发的GFS的开源实现HDFS(Hadoop Distributed FileSystem)。大部分IT厂商,包括yahoo、Intel的“云”计划采用的都是HDFS的数据存储技术。
未来的发展将集中在超大规模的数据存储、数据加密和安全性保证、以及继续提高I/O速率等方面。
2 数据管理技术
云计算系统对大数据集进行处理、分析向用户提供高效的服务。因此,数据管理技术必须能够高效的管理大数据集。其次,如何在规模巨大的数据中找到特定的数据,也是云计算数据管理技术所必须解决的问题。
云计算的特点是对海量的数据存储、读取后进行大量的分析,数据的读操作频率远大于数据的更新频率,云中的数据管理是一种读优化的数据管理。因此,云系统的数据管理往往采用数据库领域中列存储的数据管理模式。将表按列划分后存储。
云计算的数据管理技术最著名的是谷歌的BigTable数据管理技术,同时Hadoop开发团队正在开发类似BigTable的开源数据管理模块。
由于采用列存储的方式管理数据,如何提高数据的更新速率以及进一步提高随机读速率是未来的数据管理技术必须解决的问题。
3 编程模式
为了使用户能更轻松的享受云计算带来的服务,让用户能利用该编程模型编写简单的程序来实现特定的目的,云计算上的编程模型必须十分简单。必须保证后台复杂的并行执行和任务调度向用户和编程人员透明。
云计算采用类似MAP-Reduce的编程模式。现在所有IT厂商提出的“云”计划中采用的编程模型,都是基于MAP-Reduce的思想开发的编程工具。MAP-Reduce不仅仅是一种编程模型,同时也是一种高效的任务调度模型。Map-Reduce这种编程模型并不仅适用于云计算,在多核和多处理器、cell processor、以及异构机群上同样有良好的性能。
该编程模式仅适用于编写任务内部松耦合、能够高度并行化的程序。如何改进该编程模式,使程序员得能够轻松的编写紧耦合的程序,运行时能高效的调度和执行任务,是Map-Reduce编程模型未来的发展方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29