京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015,该给大数据降降温_数据分析师培训
2014年数据库市场的热词非“大数据”莫属,当市场上很多人被电商、互联网公司的“经典案例”吸引后,随即便希望尽快将自己的数据交给外部的大数据服务公司,力图通过新的数据理论和技术改变自己企业的命运、自己所服务客户的命运。根据数据安全公司Protegrity CEO的表述,在年底购物季之前的不到一年时间里,仅“身份窃取资源中心”( Identity Theft Resource Center)就抓取到了708条登上新闻头条的零售商数据泄露事件,而在年底的购物季之前这些大型零售企业(实体或者电商平台)似乎也没有计划改善数据安全。
但这些并不是数据泄露的主因,从数据安全角度分析,因为很多企业在积极拥抱新技术的同时,更多将自己的数据放在企业外部,尽管有各种商业合同所保障“纸面上”的数据隐私条款,但这无形中增加了数据的攻击面积(Attack Surface)。而事实上,私人部门之间、公共部门与私人部门之间的数据合作应该是对等的,即便以典型的MOU方式合作 ,双方之间的数据交换与使用也应该是平等的,但受限于技术能力的因素,现实中不少企业往往为了“科技面子工程”采取了单边的数据输出。概言之,新技术的大量商用化打破了数据安全既往的稳定。
但2015年这个趋势应该会逆转,原因在于随着“大数据”从商业热词、科技热点逐步回归平淡,2013-2014年依靠新技快速成为“标杆”的项目负责人需要开始反思自己“交出”的数据到底带来多少实际效果,是否以值得、以经得起法律推敲的方式将自己和客户的数据交还给外部数据服务商,数据治理和监管要求恐怕要带动一波很大的“回头潮”。
但数据交出去容易、拿回来可就没这么容易了,原因在于外部数据服务商很可能已将获得的数据作为其分析竞争力的一部分或者是支撑内容,如果突然撤走,则数据服务商可能需要进行较大的模型调整,而那些预定了数据服务的客户也不能接受中断服务的要求,因此数据所有者与外部数据服务商之间可能就需要通过“艰难”的协商过程重新划定数据的交付和使用关系。
与互联网早期一样,最初的用户面对扑面而来的门户网站、电子邮件和聊天工具绝大部分用户没有隐私和数据安全的“免疫力”,但随着围绕这些数据的生态系统越来越庞大,早期流出的隐私和商业数据安全就成为很多企业和个人多年无法摆脱的“原始错误”,而此后各方也会逐步关注这个问题,并逐步完善相关的安全措施。[CDA数据分析师培训官网]2013-2014年的“大数据”走的确实很快,以至于很多企业往往只看到了新技术的优势,而忽视了“按部就班”的传统信息化实施过程,甚至很多企业忽略了商业竞争者同样可能利用自己“交出”的数据了解自身的商业战略。
回顾很多IT热点技术的发展历史,几乎都会经历一段“野蛮生产”的过程,但毕竟不乱不治、不大乱也难有大治,因此2015年“大数据安全”不成为热点也难
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20