
2015年大数据领域重点关注的五个方面
企业如何应对大数据的挑战将是其成功的关键。2015年,商界领袖应该重点关注以下五个方面:
大数据分析的民主化。在过去的一年里,基于云的数据分析服务出现了令人难以置信的增长,而云的高性价比属性只会加速这一趋势。甚至那些曾经以为自己不可能使用先进数据分析的企业,现在可以开始快速而低成本地管理和分析结构化和非结构化数据。本质上,云将为企业提供更多的选择来实现想要的大数据效益/价格平衡点,以及为那些希望尝试大数据(尤其是非结构化数据)的公司降低门槛。
非结构化数据的增长。非结构化数据量——包括人类信息,如社交媒体、视频、音频和图片、机器传感器数据、物联网(IOT)数据,以及各种格式的业务数据——将以令人难以置信的速度继续增长。根据Gartner,物联网(不包括个人电脑、平板电脑和智能手机)到 2020将增长到260亿联网设备。企业越来越多地寻求几乎可以连接结构化和非结构化数据源并通过社交媒体和视频分析生成连接智能的解决方案。这将为大多数企业已经开始依赖的结构化数据提供更宽广的背景信息。
预测分析成为准则。预测分析将从“炫酷”发展为 “你最好拥有它”的功能。随着业务流程必须在深入了解后采取行动,重新设计大数据将是至关重要的。如果你不能预测并积极回应,确定客户每一天每一分钟在做什么是没有价值的。等你提取、转换和加载某些数据仓库或Hadoop集群中的数据时已经晚了。企业将重新设计其大数据环境,使来自企业内部和外部的信息流能够被访问、分析和实时共享。这对于增加收入、提高知识型工作者的生产力,以及降低成本来说至关重要。
大数据将改变IT运营。 “获得”大数据的公司将大数据的原则和做法首先应用于其内部IT运营,远远早于用于市场营销和客户方面。多年以来,我们一直听说“IT就是业务”。大数据将成为个体企业竞争和成长的基础,利用大数据好处的最符合逻辑的地方将是IT机器数据本身的分析——确定如何减少浪费以及最大限度地提高整个IT环境的生产力。大数据分析也在确定不断发展演变的IT安全威胁方面发挥作用。它也将跨越IT运营领域来提供连接智能,生成推动创新和关键业务优势的见解。这一过程将重振传统的服务台,转向大数据服务台会为企业带来随地提供服务的能力。
大数据面向大众。如今的大学似乎无法迅速地为首席信息官培养数据科学家。许多业内人士认为数据科学家——拥有工程和业务技能,以及统计知识的科学家——是分析公司生成的大数据并获得价值的关键。但目前缺乏所谓的“大数据人才”不应该阻碍企业开展大数据计划。关键在于使如今的业务分析师能够利用他们已经知道的工具。事实上,“数据科学家”的想法很可能在一两年内消失,而 “精通数据的商务人士”将有可能成为新宠。不过需要注意的是,如果公司将大数据分配给现有的BI团队,他们几乎肯定会失败。导致 BI获得成功的高科技、思维和办法几乎保证了大数据的失败,因为大数据需要一种全新的方式。
此外,在云中分析数据的可用性为开发者带来了一个巨大的机会,我们期望作为创新摇篮的大数据开发社区将不断涌现。基于云的大数据服务代表着管理、访问和分析各种数据(包括开发者现在可以使用像亚马逊云服务或开源系统一样的非结构化信息)的十年左右、意义重大的知识产权。开发者才刚刚开始利用大数据(尤其是非结构化数据)的价值,而在未来的几年内,这种趋势只会加剧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01