京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据有边界吗_数据分析师
在2014年那本《大数据时代》的问世,描绘了一个即将可以替代移动互联网时代的大数据时代。在文章成功案例和事件的烘托下,大数据成了2014年最火热的互联网关键词之一,大数据也被描述成一个无所不能,所向无敌,毫无弱点的事物,也出现了大数据概念的公司和事件。那大数据真的就如文章和营造的所说的那么厉害吗?
提到大数据的利用,经常被提到的一个案例,那就是,沃尔玛借助大数据,将一本怀孕杂志寄到了一位未婚女孩的家里,而那女孩的父亲非常生气,便起诉沃尔玛诬陷,而最后父亲从女儿那里得到消息,自己确实怀孕了。
从大数据概念那里解读,毫无疑问,这是一个成功的案例,但如果说从用户的角度来看,从女孩和她父亲的角度来看,这样寄送怀孕杂志寄到一个未婚女生手里,不管是开放的国家,还是相对保守的国家,这无疑是侵犯了个人的隐私,对自己造成了很大的影响,寄送杂志的行为,并不会被看成友好的行为。
通过上述这个被认为是充分利用大数据的案例,发现,其实并不是那么的美好,大数据还是有它的局限的,那就是隐私。
互联网与传统领域不同的便是,互联网会记录用户的行为,你在网上购物,会留下你的浏览记录、搜索记录、信用卡信息、家庭地址、电话等隐私数据,你借助网络聊天,互联网可以记录你敲下的每一个字符。因此,互联网会拥有你在互联网上的所有行为,有了行为数据,经过分析,自然会得到用户较为详细的资料,资料中自然包含隐私数据,这是互联网的特性,也是大数据产生的基础。
很多电商在首页会有推荐功能,大多是根据用户之前的关键词搜索或者点击浏览记录,进行的同类商品的推荐,在用户心中,是比较喜欢的。但当阿里巴巴入股微博后,在微博页面中,插入类似的广告后,却引起了用户的高度反感,也成了微博活跃用户下降的主因之一。那为什么会出现两种不同的态度,关键在于用户的使用环境和需求。
用户访问电商网站,如果出现同类型对比,对用户来讲,不存在涉及个人隐私的情况,更多的会看成网站更加智能和人性化,因此,出现类似的广告,在用户看来,是可以接受,甚至是喜欢的。但如果是出现在社交网站的页面中,由于社交网站,特别是UGC(用户生成内容)模式的社交网站,具有高度的私人化,因此,用户对隐私具有较高的敏感度,因此,一旦出现用户认为涉及隐私的,用户的反感情绪比较高。由于使用环境和需求的不同,导致用户的态度也是不同的。
很多人可能会说了,那既然如此,大数据是互联网下必然产生的结果,有了足够多的数据,用户隐私自然是无法保护的,那该如果做呢?
正如武器是无罪的,有罪的是使用者。其实大数据是无边界的,但利用大数据必须是有边界的,边界就是基于隐私保护的大数据服务。那该如何做呢?作为最有利于收集数据和用户隐私的电商网站的京东和支付宝,给出答案。
京东在借助大数据下,有了一个很厉害的预测,它可以计算出用户的下单率。当用户访问某件商品时,京东根据用户的之前购物习惯、该商品页面的访问时间等数据,分析出用户购买的可能性和何时购买,如果说分析出用户有较高的购买性,但可能是在几天后,而恰恰距离用户最近的仓储没有该商品,那京东会先将商品进行配送到临近的仓储,等用户下单时,商品可能已经到达最近的仓储了,那收货的时间自然会缩短。从这个功能来看,对京东来讲,借助大数据,我可以分析出很多用户不知道,也很隐私的数据,但我借助分析,而是改变的用户体验;对用户来讲我感受到的是,从京东上购买商品的配送时间缩短,改变的是用户的切身感受,自然不会去考虑京东是如何操作的。
支付宝最近推出的芝麻信用,也是根据用户在支付宝上的交易数据,和其他数据,计算出用户的虚拟信用,借助虚拟信用,未来可以推出基于虚拟信用的服务,对用户来讲,改变的是自己的体验和未来适合用户的功能,因此,也不会去考虑涉及隐私的考虑。
幸运的是,现在越来越多的企业明白,隐私是基于大数据服务的底线,不能触碰的高压线。在利用大数据时也遵循了基于用户隐私保护的大数据服务这个大数据的边界,并且出发点是改善用户的体验。如果将上面沃尔玛的例子改一下,是一个已婚未育的妇女,收到了怀孕杂志,相信和未婚女生收到怀孕杂志的心情是不一样的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16